Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots.

[1]  K. D. Roeder The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.) , 1937 .

[2]  K. D. Roeder,et al.  Endogenous nerve activity and behaviour in the mantis and cockroach , 1960 .

[3]  D. Wilson Insect walking. , 1966, Annual review of entomology.

[4]  F. Delcomyn The Locomotion of the Cockroach Periplaneta Americana , 1971 .

[5]  C. R. Fourtner,et al.  Nonspiking interneurons in walking system of the cockroach. , 1975, Journal of neurophysiology.

[6]  S. Miller,et al.  Movements of the forelimbs of the cat during stepping on a treadmill , 1975, Brain Research.

[7]  K. Pearson The control of walking. , 1976, Scientific American.

[8]  A W English,et al.  Functional analysis of the shoulder girdle of cats during locomotion , 1978, Journal of morphology.

[9]  A. English,et al.  An electromyographic analysis of forelimb muscles during overground stepping in the cat. , 1978, The Journal of experimental biology.

[10]  K. Pearson,et al.  Characteristics of Leg Movements and Patterns of Coordination in Locusts Walking on Rough Terrain , 1984 .

[11]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[12]  L. Strong,et al.  Arthropod brain (its evolution, development, structure and functions): A. P. Gupta (Ed.), 588 pp. Published by John Wiley & Sons, New York, 1987. Price £60. ISBN 0-471-82811-4 , 1988 .

[13]  Rodney A. Brooks,et al.  A Robot that Walks; Emergent Behaviors from a Carefully Evolved Network , 1989, Neural Computation.

[14]  Rodney A. Brooks,et al.  A robot that walks; emergent behaviors from a carefully evolved network , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[15]  H. Cruse What mechanisms coordinate leg movement in walking arthropods? , 1990, Trends in Neurosciences.

[16]  H. Preuschoft,et al.  Human body proportions explained on the basis of biomechanical principles. , 1991, Zeitschrift fur Morphologie und Anthropologie.

[17]  Neville Hogan,et al.  Integrable Solutions of Kinematic Redundancy via Impedance Control , 1991, Int. J. Robotics Res..

[18]  R. Blickhan,et al.  Leg design in hexapedal runners. , 1991, The Journal of experimental biology.

[19]  K. Pearson Common principles of motor control in vertebrates and invertebrates. , 1993, Annual review of neuroscience.

[20]  T. Drew Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs. , 1993, Journal of neurophysiology.

[21]  Randall D. Beer,et al.  Leg Coordination Mechanisms in the Stick Insect Applied to Hexapod Robot Locomotion , 1993, Adapt. Behav..

[22]  Karsten Berns,et al.  Adaptive, neural control architecture for the walking machine LAURON , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[23]  M. Fischer Crouched posture and high fulcrum, a principle in the locomotion of small mammals: The example of the rock hyrax (Procavia capensis) (Mammalia: Hyracoidea) , 1994 .

[24]  Friedrich Pfeiffer,et al.  The Tum-Walking Machine , 1995, Intell. Autom. Soft Comput..

[25]  M. Illert,et al.  Kinematic Analysis of the Cat Shoulder Girdle during Treadmill Locomotion: an X‐ray Study , 1996, The European journal of neuroscience.

[26]  Randall D. Beer,et al.  Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot , 1996, Robotics Auton. Syst..

[27]  L. Rowell,et al.  Exercise : regulation and integration of multiple systems , 1996 .

[28]  P. Katz Neurons, Networks, and Motor Behavior , 1996, Neuron.

[29]  J. Coast Handbook of Physiology. Section 12. Exercise: Regulation and Integration of Multiple Systems , 1997 .

[30]  J. T. Watson,et al.  Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis : I. Slow running , 1997, Journal of Comparative Physiology A.

[31]  R. Full,et al.  Three-dimensional kinematics and limb kinetic energy of running cockroaches. , 1997, The Journal of experimental biology.

[32]  Roger D. Quinn,et al.  Design and simulation of a cockroach-like hexapod robot , 1997, Proceedings of International Conference on Robotics and Automation.

[33]  N. Strausfeld Crustacean – Insect Relationships: The Use of Brain Characters to Derive Phylogeny amongst Segmented Invertebrates , 1998, Brain, Behavior and Evolution.

[34]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Their participation in place memory , 1998, The Journal of comparative neurology.

[35]  E. Staudacher Distribution and morphology of descending brain neurons in the cricket Gryllus bimaculatus , 1998, Cell and Tissue Research.

[36]  U. Bässler,et al.  Pattern generation for stick insect walking movements—multisensory control of a locomotor program , 1998, Brain Research Reviews.

[37]  Karsten Berns,et al.  Clawar 99: A concept for walking behaviour in rough terrain , 1999 .

[38]  N. Strausfeld A brain region in insects that supervises walking. , 1999, Progress in brain research.

[39]  Mark E. Nelson,et al.  Architectures for a biomimetic hexapod robot , 2000, Robotics Auton. Syst..

[40]  A K Tryba,et al.  Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. I. Kinematics and electromyograms. , 2000, Journal of neurophysiology.

[41]  Daniel E. Koditschek,et al.  Design, modeling and preliminary control of a compliant hexapod robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[42]  Y. Jiao,et al.  Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, insecta). , 2000, The Journal of experimental biology.

[43]  Roger D. Quinn,et al.  Insect Walking and Biorobotics: A Relationship with Mutual Benefits , 2000 .

[44]  Jonathan E. Clark,et al.  Biomimetic design and fabrication of a hexapedal running robot , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[45]  B. Gassmann,et al.  Locomotion of LAURON III in rough terrain , 2001, 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556).

[46]  U. Bässler,et al.  The role of sensory signals from the insect coxa-trochanteral joint in controlling motor activity of the femur-tibia joint. , 2001, Journal of neurophysiology.

[47]  H. Benjamin Brown,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. RHex: A Biologically Inspired Hexapod Runner ∗ , 2022 .

[48]  R. Ritzmann,et al.  Descending influences on escape behavior and motor pattern in the cockroach. , 2001, Journal of neurobiology.

[49]  R. Quinn,et al.  Insect Designs for Improved Robot Mobility , 2001 .

[50]  Roy E. Ritzmann,et al.  Control of obstacle climbing in the cockroach, Blaberus discoidalis. I. Kinematics , 2002, Journal of Comparative Physiology A.

[51]  Hartmut F. Witte,et al.  Hints for the construction of anthropomorphic robots based on the functional morphology of human walking (特集「ロコモーション」) , 2002 .

[52]  R. Full,et al.  Dynamic stabilization of rapid hexapedal locomotion. , 2002, The Journal of experimental biology.

[53]  Joel L. Davis,et al.  Neurotechnology for Biomimetic Robots , 2002 .

[54]  M. Fischer,et al.  Basic limb kinematics of small therian mammals. , 2002, The Journal of experimental biology.

[55]  Faiz Ben Amar,et al.  Climbing and Walking Robots and the Support Technologies for Mobile Machines , 2002 .

[56]  Daniel A. Kingsley,et al.  Improved mobility through abstracted biological principles , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  J. T. Watson,et al.  Control of climbing behavior in the cockroach, Blaberus discoidalis. II. Motor activities associated with joint movement , 2002, Journal of Comparative Physiology A.

[58]  Roger D. Quinn,et al.  Abstracted biological principles applied with reduced actuation improve mobility of legged vehicles , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[59]  Daniel A. Kingsley,et al.  Parallel Complementary Strategies for Implementing Biological Principles into Mobile Robots , 2003, Int. J. Robotics Res..

[60]  Roger D. Quinn,et al.  Highly mobile and robust small quadruped robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[61]  Roger D. Quinn,et al.  Comparing cockroach and Whegs robot body motions , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[62]  Jeffrey Dean,et al.  A model of leg coordination in the stick insect, Carausim morosus , 1992, Biological Cybernetics.

[63]  Barbara Webb,et al.  Robot phonotaxis in the wild: a biologically inspired approach to outdoor sound localization , 2004, Adv. Robotics.

[64]  Jeffrey Dean,et al.  A model of leg coordination in the stick insect, Carausius morosus , 1991, Biological Cybernetics.

[65]  Roger D. Quinn,et al.  Mechanized cockroach footpaths enable cockroach-like mobility , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[66]  Thomas S. Ray,et al.  Life's Solution: Inevitable Humans in a Lonely Universe , 2006, Artificial Life.

[67]  M. O. Tokhi,et al.  Climbing and Walking Robots - Proceedings of the 8th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2005, London, UK, September 13-15, 2005 , 2006, CLAWAR.

[68]  Daniel A. Kingsley,et al.  A Cockroach Inspired Robot With Artificial Muscles , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.