Fluorescence quenching of pyrene monomer and excimer by CH3I

Abstract The fluorescence quenching rate constants of pyrene monomer and excimer by CH 3 I were obtained at several temperatures in methylcyclohexane. Both quenching processes are kinetically controlled, allowing insight on the mechanism of quenching. The rate constants have both temperature-independent and temperature-dependent components. The temperature-independent component for both monomer and excimer fluorescence is consistent with quenching due to enhanced intersystem crossing to a lower energy triplet state. The monomer temperature-dependent component comes from the enhancement of the intersystem crossing to a higher energy triplet state. The thermally activated excimer quenching is associated with the excimer dissociation step to give a pyrene in a second triplet state plus a ground state pyrene molecule.

[1]  J. T. Edward,et al.  Molecular Volumes and the Stokes-Einstein Equation. , 1970 .

[2]  J. B. Birks,et al.  Organic Molecular Photophysics , 1975 .

[3]  H. Hirano,et al.  Temperature dependence of intersystem crossing of pyrene , 1982 .

[4]  M. Okamoto,et al.  Thermal energy assisted heavy atom effect: fluorescence quenching of 9-cyanoanthracene in the supercritical fluid of Xe , 1996 .

[5]  B. Stevens,et al.  Double intersystem-crossing in naphthalene and 1-chloronaphthalene , 1968 .

[6]  Daniel Taupin,et al.  Probabilities data reduction and error analysis in the physical sciences/ by Daniel Taupin , 1988 .

[7]  H. Dreeskamp,et al.  Thermally assisted and heavy-atom assisted intersystem crossing in meso-substituted anthracenes , 1979 .

[8]  M. Mac,et al.  Fluorescence quenching of phenanthrene and chrysene by potassium iodide in methanol-ethanol solutions , 1987 .

[9]  Yoshito Y. Tanaka,et al.  Effects of clustering of rare-gas atoms on the rate of S1T2 intersystem crossing for 9-methylanthracene , 1996 .

[10]  Donald S. McClure,et al.  Triplet‐Singlet Transitions in Organic Molecules. Lifetime Measurements of the Triplet State , 1949 .

[11]  I. Munro,et al.  External heavy atom effects on the decay of the triplet state of aromatic hydrocarbons III. The decay functions of fluorescence and phosphorescence of carbazole in the presence of KI , 1978 .

[12]  H. Löhmannsröben,et al.  The deactivation of singlet excited all-trans-1,6-diphenylhexa-1,3,5-triene by intermolecular charge transfer processes. 1. Mechanisms of fluorescence quenching and of triplet and cation formation , 1996 .

[13]  Young S. Choi,et al.  FLUORESCENCE LIFETIMES OF THE VAN DER WAALS CLUSTERS OF OCTATETRAENE (S1-RARE-GAS ATOMS : EXTERNAL HEAVY ATOM EFFECT , 1995 .

[14]  F. Wilkinson,et al.  Concentration dependence of quantum yield of triplet-state production of pyrene in ethanol , 1966 .

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  J. B. Birks,et al.  Photophysics of aromatic molecules , 1970 .

[17]  T. Smith,et al.  Solvent dielectric relaxation properties and the external heavy atom effect in the time-resolved fluorescence quenching of anthracene by potassium lodide and potassium thiocyanate in methanol and ethanol , 1992 .

[18]  S. Yamauchi,et al.  Observation of the set of the three sublevel phosphorescence spectra. III. External heavy atom effect on the phosphorescence spectra of quinoxaline and 2,3‐dichloroquinoxaline , 1981 .

[19]  S. McGlynn,et al.  Molecular Spectroscopy of the Triplet State. , 1969 .

[20]  S. Yamauchi,et al.  Mechanisms of external heavy atom effects on the lowest excited triplet states: Naphthalene and biphenyl X traps , 1985 .

[21]  S. McGlynn,et al.  Energy Transfer in Charge‐Transfer Complexes. III. Intersystem Crossing , 1964 .

[22]  B. Stevens,et al.  Intersystem Crossing in Pyrene , 1967 .

[23]  H. Khwaja,et al.  Quenching of the singlet and triplet state of benzene in condensed phase , 1984 .

[24]  J. Kuśba,et al.  Distance-Dependent Fluorescence Quenching of p-Bis[2-(5-phenyloxazolyl)]benzene by Various Quenchers. , 1996, The Journal of physical chemistry.

[25]  M. Berberan-Santos,et al.  Test of a model for reversible excimer kinetics : pyrene in cyclohexanol , 1992 .

[26]  F. J. Smith,et al.  External Heavy‐Atom Spin—Orbital Coupling Effect. IV. Intersystem Crossing , 1963 .

[27]  A. Wach,et al.  Solvents effects on the fluorescence quenching of anthracene by iodide ions , 1991 .

[28]  A. R. Horrocks,et al.  Mechanism of fluorescence quenching in solution. Part 2.—Quenching by xenon and intersystem crossing efficiencies , 1966 .

[29]  J. B. Birks,et al.  Influence of environment on the radiative and radiationless transition rates of the pyrene excimer , 1971 .

[30]  Michael Kasha,et al.  Collisional Perturbation of Spin‐Orbital Coupling and the Mechanism of Fluorescence Quenching. A Visual Demonstration of the Perturbation , 1952 .

[31]  J. Martinho Heavy-atom quenching of monomer and excimer pyrene fluorescence , 1989 .

[32]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[33]  H. Khwaja,et al.  Quenching of the fluorescence of substituted benzenes by halomethanes , 1983 .

[34]  H. Ågren,et al.  On the interpretation of the external heavy atom effect on singlet-triplet transitions , 1994 .

[35]  A. R. Horrocks,et al.  SOLVENT DEPENDENCE OF THE QUANTUM YIELD OF TRIPLET STATE PRODUCTION OF 9‐PHENYLANTHRACENE , 1967 .

[36]  F. Wilkinson,et al.  Mechanism of fluorescence quenching in solution. Part 1.—Quenching by bromobenzene , 1965 .

[37]  S. Siegel,et al.  Intersystem crossing in pyrene-h10 and pyrene-d10 , 1968 .

[38]  L. K. Patterson,et al.  Quenching of aromatic hydrocarbon fluorescence by cesium chloride , 1975 .

[39]  K. Kikuchi,et al.  Heavy-atom effects on the excited singlet state electron-transfer reaction , 1991 .

[40]  B. Stevens,et al.  Double intersystem-crossing in 3-bromopyrene , 1968 .