Prelude to hopf bifurcation in an epidemic model: Analysis of a characteristic equation associated with a nonlinear Volterra integral equation
暂无分享,去创建一个
[1] Herbert W. Hethcote,et al. NONLINEAR OSCILLATIONS IN EPIDEMIC MODELS , 1981 .
[2] G. Gripenberg. Periodic solutions of an epidemic model , 1980, Journal of mathematical biology.
[3] K. Cooke,et al. The effect of integral conditions in certain equations modelling epidemics and population growth , 1980, Journal of mathematical biology.
[4] L. Turyn. Functional Difference Equations and an Epidemic Model. , 1980 .
[5] J. Hale,et al. Hopf bifurcation for functional equations , 1980 .
[6] H. Hethcote,et al. Integral equation models for endemic infectious diseases , 1980, Journal of mathematical biology.
[7] Jack K. Hale,et al. Nonlinear Oscillations in Equations with Delays. , 1978 .
[8] Jack K. Hale,et al. Behavior near constant solutions of functional differential equations , 1974 .
[9] J. Cushing. BIFURCATION OF PERIODIC SOLUTIONS OF NONLINEAR EQUATIONS IN AGE-STRUCTURED POPULATION DYNAMICS , 1982 .
[10] H. A. Lauwerier,et al. Mathematical models of epidemics , 1981 .
[11] Michael Williams,et al. Stability in a class of cyclic epidemic models with delay , 1981 .
[12] O. Diekmann,et al. A VARIATION-OF-CONSTANTS FORMULA FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF CONVOLUTION TYPE , 1981 .
[13] Herbert W. Hethcote,et al. Stability analysis for models of diseases without immunity , 1981, Journal of mathematical biology.
[14] R. Montijn. Een karakteristieke vergelijking uit de mathematische epidemiologie , 1980 .
[15] J. Cushing. Nontrivial periodic solutions of some volterra integral equations , 1979 .
[16] Frank Hoppenstaedt. Mathematical Theories of Populations: Demographics, Genetics and Epidemics , 1975 .