Prelude to hopf bifurcation in an epidemic model: Analysis of a characteristic equation associated with a nonlinear Volterra integral equation

[1]  Herbert W. Hethcote,et al.  NONLINEAR OSCILLATIONS IN EPIDEMIC MODELS , 1981 .

[2]  G. Gripenberg Periodic solutions of an epidemic model , 1980, Journal of mathematical biology.

[3]  K. Cooke,et al.  The effect of integral conditions in certain equations modelling epidemics and population growth , 1980, Journal of mathematical biology.

[4]  L. Turyn Functional Difference Equations and an Epidemic Model. , 1980 .

[5]  J. Hale,et al.  Hopf bifurcation for functional equations , 1980 .

[6]  H. Hethcote,et al.  Integral equation models for endemic infectious diseases , 1980, Journal of mathematical biology.

[7]  Jack K. Hale,et al.  Nonlinear Oscillations in Equations with Delays. , 1978 .

[8]  Jack K. Hale,et al.  Behavior near constant solutions of functional differential equations , 1974 .

[9]  J. Cushing BIFURCATION OF PERIODIC SOLUTIONS OF NONLINEAR EQUATIONS IN AGE-STRUCTURED POPULATION DYNAMICS , 1982 .

[10]  H. A. Lauwerier,et al.  Mathematical models of epidemics , 1981 .

[11]  Michael Williams,et al.  Stability in a class of cyclic epidemic models with delay , 1981 .

[12]  O. Diekmann,et al.  A VARIATION-OF-CONSTANTS FORMULA FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF CONVOLUTION TYPE , 1981 .

[13]  Herbert W. Hethcote,et al.  Stability analysis for models of diseases without immunity , 1981, Journal of mathematical biology.

[14]  R. Montijn Een karakteristieke vergelijking uit de mathematische epidemiologie , 1980 .

[15]  J. Cushing Nontrivial periodic solutions of some volterra integral equations , 1979 .

[16]  Frank Hoppenstaedt Mathematical Theories of Populations: Demographics, Genetics and Epidemics , 1975 .