The ancestral flower of angiosperms and its early diversification

[1]  F. Parcy,et al.  A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. , 2017, The New phytologist.

[2]  S. Gerber,et al.  How (much) do flowers vary? Unbalanced disparity among flower functional modules and a mosaic pattern of morphospace occupation in the order Ericales , 2017, Proceedings of the Royal Society B: Biological Sciences.

[3]  Christophe Klopp,et al.  Reconstructing the genome of the most recent common ancestor of flowering plants , 2017, Nature Genetics.

[4]  P. Herendeen,et al.  Palaeobotanical redux: revisiting the age of the angiosperms , 2017, Nature Plants.

[5]  C. Scutt,et al.  Dioecy in Amborella trichopoda: evidence for genetically based sex determination and its consequences for inferences of the breeding system in early angiosperms , 2017, Annals of botany.

[6]  Charles S. P. Foster,et al.  Evaluating the Impact of Genomic Data and Priors on Bayesian Estimates of the Angiosperm Evolutionary Timescale , 2016, Systematic biology.

[7]  L. Harder,et al.  Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity , 2016, Proceedings of the Royal Society B: Biological Sciences.

[8]  P. K. Endress Development and evolution of extreme synorganization in angiosperm flowers and diversity: a comparison of Apocynaceae and Orchidaceae. , 2016, Annals of botany.

[9]  Stacey D. Smith Pleiotropy and the evolution of floral integration. , 2016, The New phytologist.

[10]  J. Doyle,et al.  Ancestral traits and specializations in the flowers of the basal grade of living angiosperms , 2015 .

[11]  G. Merceron,et al.  mvmorph: an r package for fitting multivariate evolutionary models to morphometric data , 2015 .

[12]  Peter Crane,et al.  Heterogeneous Rates of Molecular Evolution and Diversification Could Explain the Triassic Age Estimate for Angiosperms Systematic Biology Advance Access Published May 4, 2015 , 2022 .

[13]  D. Dilcher,et al.  Montsechia, an ancient aquatic angiosperm , 2015, Proceedings of the National Academy of Sciences.

[14]  S. Magallón,et al.  A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. , 2015, The New phytologist.

[15]  S. Nadot,et al.  Zygomorphy evolved from disymmetry in Fumarioideae (Papaveraceae, Ranunculales): new evidence from an expanded molecular phylogenetic framework. , 2015, Annals of botany.

[16]  J. Doyle Recognising angiosperm clades in the Early Cretaceous fossil record , 2015 .

[17]  P. Mitteroecker,et al.  The floral morphospace--a modern comparative approach to study angiosperm evolution. , 2014, The New phytologist.

[18]  Saravanaraj N. Ayyampalayam,et al.  Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.

[19]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[20]  P. Diggle Modularity and intra-floral integration in metameric organisms: plants are more than the sum of their parts , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  J. Doyle,et al.  Integrating Early Cretaceous Fossils into the Phylogeny of Living Angiosperms: ANITA Lines and Relatives of Chloranthaceae , 2014, International Journal of Plant Sciences.

[22]  D. Adams,et al.  Assessing Trait Covariation and Morphological Integration on Phylogenies Using Evolutionary Covariance Matrices , 2014 .

[23]  Pamela S Soltis,et al.  From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes , 2014, BMC Evolutionary Biology.

[24]  M. Donoghue,et al.  Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in campanulid angiosperms. , 2013, Systematic biology.

[25]  K. Hilu,et al.  Land plant evolutionary timeline: gene effects are secondary to fossil constraints in relaxed clock estimation of age and substitution rates. , 2013, American journal of botany.

[26]  T. F. Hansen,et al.  A phylogenetic comparative method for studying multivariate adaptation. , 2012, Journal of theoretical biology.

[27]  P. Rudall Identifying Key Features in the Origin and Early Diversification of Angiosperms , 2012 .

[28]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[29]  E. Canuel,et al.  Molecular and Fossil Evidence on the Origin of Angiosperms , 2012 .

[30]  Peter R. Crane,et al.  Early Flowers and Angiosperm Evolution , 2011 .

[31]  D. E. Soltis,et al.  Angiosperm phylogeny: 17 genes, 640 taxa. , 2011, American journal of botany.

[32]  P. K. Endress Evolutionary diversification of the flowers in angiosperms. , 2011, American journal of botany.

[33]  Klaus Peter Schliep,et al.  phangorn: phylogenetic analysis in R , 2010, Bioinform..

[34]  J. G. Burleigh,et al.  Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots , 2010, Proceedings of the National Academy of Sciences.

[35]  C. Specht,et al.  Flower Evolution: The Origin and Subsequent Diversification of the Angiosperm Flower , 2009 .

[36]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[37]  J. Doyle,et al.  Reconstructing the ancestral angiosperm flower and its initial specializations. , 2009, American journal of botany.

[38]  E. Goldberg,et al.  On Phylogenetic Tests of Irreversible Evolution , 2008, Evolution; international journal of organic evolution.

[39]  J. Doyle Integrating Molecular Phylogenetic and Paleobotanical Evidence on Origin of the Flower , 2008, International Journal of Plant Sciences.

[40]  M. Chase,et al.  After a dozen years of progress the origin of angiosperms is still a great mystery , 2007, Nature.

[41]  James Leebens-Mack,et al.  Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns , 2007, Proceedings of the National Academy of Sciences.

[42]  Pamela S Soltis,et al.  Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms , 2007, Proceedings of the National Academy of Sciences.

[43]  Peter E Midford,et al.  Estimating a binary character's effect on speciation and extinction. , 2007, Systematic biology.

[44]  M. Donoghue,et al.  Towards a phylogenetic nomenclature of Tracheophyta , 2007 .

[45]  Pamela S Soltis,et al.  The ABC model and its applicability to basal angiosperms. , 2007, Annals of botany.

[46]  Friedrich-Schiller-Universitaet,et al.  Molecular Mechanisms Underlying Origin and Diversification of the Angiosperm Flower , 2007 .

[47]  P. Rudall,et al.  Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers. , 2006, Journal of experimental botany.

[48]  M. Pagel,et al.  Bayesian Analysis of Correlated Evolution of Discrete Characters by Reversible‐Jump Markov Chain Monte Carlo , 2006, The American Naturalist.

[49]  E. M. Friis,et al.  Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction , 2006 .

[50]  P. K. Endress Angiosperm Floral Evolution: Morphological Developmental Framework , 2006 .

[51]  M. Pagel,et al.  Bayesian estimation of ancestral character states on phylogenies. , 2004, Systematic biology.

[52]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[53]  J. Lundberg,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG II THE ANGIOSPERM PHYLOGENY GROUP * , 2003 .

[54]  D. Soltis,et al.  Evolution of Floral Structures in Basal Angiosperms , 2003, International Journal of Plant Sciences.

[55]  Jonathan P. Bollback,et al.  Stochastic mapping of morphological characters. , 2003, Systematic biology.

[56]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[57]  Mark W. Chase,et al.  The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes , 1999, Nature.

[58]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[59]  D. Schluter,et al.  LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION , 1997, Evolution; international journal of organic evolution.

[60]  E. M. Friis,et al.  The origin and early diversification of angiosperms , 1995, Nature.

[61]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  D. Dilcher,et al.  Ancient Bisexual Flowers , 1984, Science.

[63]  G. Stebbins NATURAL SELECTION AND THE DIFFERENTIATION OF ANGIOSPERM FAMILIES , 1951 .