emerge – empirical constraints on the formation of passive galaxies

We present constraints on the formation and evolution of early-type galaxies (ETGs) with the empirical model EMERGE. The parameters of this model are adjusted so that it reproduces the evolution of stellar mass functions, specific star formation rates, and cosmic star formation rates since $z\approx10$ as well as 'quenched' galaxy fractions and correlation functions. We find that at fixed halo mass present-day ETGs are more massive than late-type galaxies, whereas at fixed stellar mass ETGs populate more massive halos in agreement with lensing results. This effect naturally results from the shape and scatter of the stellar-to-halo mass relation and the galaxy formation histories. The ETG stellar mass assembly is dominated by 'in-situ' star formation below a stellar mass of $3\times10^{11}\mathrm{M}_\odot$ and by merging and accretion of 'ex-situ' formed stars at higher mass. The mass dependence is in tension with current cosmological simulations. Lower mass ETGs show extended star formation towards low redshift in agreement with recent estimates from IFU surveys. All ETGs have main progenitors on the 'main sequence of star formation' with the 'red sequence' appearing at $z \approx 2$. Above this redshift, over 95 per cent of the ETG progenitors are star-forming. More than 90 per cent of $z \approx 2$ 'main sequence' galaxies with $m_* > 10^{10}\mathrm{M}_\odot$ evolve into present-day ETGs. Above redshift 6, more than 80 per cent of the observed stellar mass functions above $10^{9}\mathrm{M}_\odot$ can be accounted for by ETG progenitors with $m_* > 10^{10}\mathrm{M}_\odot$. This implies that current and future high redshift observations mainly probe the birth of present-day ETGs. The source code and documentation of EMERGE are available at this http URL.

[1]  F. Shankar,et al.  Predicting fully self-consistent satellite richness, galaxy growth and starformation rates from the STastical sEmi-Empirical modeL steel. , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  V. Springel,et al.  Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  J. Brownstein,et al.  Galaxy properties as revealed by MaNGA – II. Differences in stellar populations of slow and fast rotator ellipticals and dependence on environment , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  E. Taylor,et al.  Evolution of the Stellar Mass Function and Infrared Luminosity Function of Galaxies since z = 1.2 , 2019, The Astrophysical Journal.

[5]  A. Zentner,et al.  Updated results on the galaxy–halo connection from satellite kinematics in SDSS , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  S. White,et al.  The origin of the mass scales for maximal star formation efficiency and quenching: the critical role of supernovae , 2018, Monthly Notices of the Royal Astronomical Society.

[7]  S. Driver,et al.  GAMA/G10-COSMOS/3D-HST: Evolution of the galaxy stellar mass function over 12.5 Gyr , 2018, Monthly Notices of the Royal Astronomical Society.

[8]  C. Conselice,et al.  Evolution of the galaxy stellar mass functions and UV luminosity functions at z = 6−9 in the Hubble Frontier Fields , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[10]  J. Brinchmann,et al.  The MUSE Hubble Ultra Deep Field Survey , 2018, Astronomy & Astrophysics.

[11]  J. Tinker,et al.  The Connection Between Galaxies and Their Dark Matter Halos , 2018, Annual Review of Astronomy and Astrophysics.

[12]  A. Dekel,et al.  The frequency of very young galaxies in the local Universe: I. A test for galaxy formation and cosmological models , 2018, 1802.09530.

[13]  O. Ilbert,et al.  An Alternate Approach to Measure Specific Star Formation Rates at , 2017, 1712.03959.

[14]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[15]  C. Baugh,et al.  The Impact of Assembly Bias on the Galaxy Content of Dark Matter Halos , 2017, 1706.07871.

[16]  S. White,et al.  EMERGE – an empirical model for the formation of galaxies since z ∼ 10 , 2017, 1705.05373.

[17]  R. Dav'e,et al.  mufasa: the assembly of the red sequence , 2017, 1704.01135.

[18]  M. Dickinson,et al.  “Super-deblended” Dust Emission in Galaxies. I. The GOODS-North Catalog and the Cosmic Star Formation Rate Density out to Redshift 6 , 2017, 1703.05281.

[19]  J. Ostriker,et al.  Theoretical Challenges in Galaxy Formation , 2016, 1612.06891.

[20]  G. Blanc,et al.  The evolution of the star formation rate function and cosmic star formation rate density of galaxies at z ∼ 1–4 , 2016, 1610.03441.

[21]  S. More,et al.  Strong bimodality in the host halo mass of central galaxies from galaxy–galaxy lensing , 2015, 1509.06762.

[22]  G. Zamorani,et al.  Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang , 2015, Science.

[23]  I. Trujillo,et al.  The abundance of satellites depends strongly on the morphology of the host galaxy , 2015, 1504.02777.

[24]  G. Stinson,et al.  NIHAO project – I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations , 2015, 1503.04818.

[25]  A. Renzini,et al.  AN OBJECTIVE DEFINITION FOR THE MAIN SEQUENCE OF STAR-FORMING GALAXIES , 2015, 1502.01027.

[26]  K. Alatalo,et al.  The ATLAS3D Project – XXX. Star formation histories and stellar population scaling relations of early-type galaxies , 2015, 1501.03723.

[27]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[28]  S. Lilly,et al.  QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY , 2014, 1408.2553.

[29]  R. Wechsler,et al.  THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.

[30]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[31]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[32]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[33]  G. Kauffmann,et al.  Parametrizing the stellar haloes of galaxies , 2014, 1404.2123.

[34]  E. Choi,et al.  The impact of mechanical AGN feedback on the formation of massive early-type galaxies , 2014, 1403.1257.

[35]  J. Cardoso,et al.  Dancing in the dark: galactic properties trace spin swings along the cosmic web , 2014, 1402.1165.

[36]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[37]  Andreas Burkert,et al.  Cosmological simulations of black hole growth: AGN luminosities and downsizing , 2013, 1308.0333.

[38]  D. Croton,et al.  The simplest model of galaxy formation – I. A formation history model of galaxy stellar mass growth , 2013, 1304.2774.

[39]  S. Faber,et al.  The star-forming progenitors of massive red galaxies , 2013, 1301.2067.

[40]  B. Weiner,et al.  PHIBSS: MOLECULAR GAS CONTENT AND SCALING RELATIONS IN z ∼ 1–3 MASSIVE, MAIN-SEQUENCE STAR-FORMING GALAXIES , 2012, 1211.5743.

[41]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[42]  G. Mamon,et al.  Physical properties underlying observed kinematics of satellite galaxies , 2012, 1207.1647.

[43]  R. Teyssier,et al.  Cusp-core transformations in dwarf galaxies: observational predictions , 2012, 1206.4895.

[44]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[45]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[46]  J. Rhodes,et al.  THE CORRELATED FORMATION HISTORIES OF MASSIVE GALAXIES AND THEIR DARK MATTER HALOS , 2012, 1205.4245.

[47]  G. Brammer,et al.  THE STAR FORMATION MASS SEQUENCE OUT TO z = 2.5 , 2012, 1205.0547.

[48]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[49]  Risa H. Wechsler,et al.  GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY , 2011, 1110.4370.

[50]  R. Davies,et al.  The ATLAS3D project IX: the merger origin of a fast- and a slow-rotating early-type galaxy revealed with deep optical imaging: first results , 2011, 1105.5654.

[51]  Oliver Hahn,et al.  Multi-scale initial conditions for cosmological simulations , 2011, 1103.6031.

[52]  R. Davies,et al.  The ATLAS3D project – I. A volume-limited sample of 260 nearby early-type galaxies: science goals and selection criteria , 2010, 1012.1551.

[53]  N. Roche,et al.  Evidence of major dry mergers at M* > 2 × 1011M⊙ from curvature in early-type galaxy scaling relations? , 2010, 1011.1501.

[54]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[55]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[56]  Oxford,et al.  How do galaxies acquire their mass , 2010, 1002.3257.

[57]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[58]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[59]  K. Schawinski,et al.  Environment and self-regulation in galaxy formation , 2009, 0912.0259.

[60]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[61]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[62]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[63]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[64]  R. Wechsler,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 CONNECTING GALAXIES, HALOS, AND STAR FORMATION RATES ACROSS COSMIC TIME , 2008 .

[65]  Frank C. van den Bosch,et al.  Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results , 2008, 0805.1926.

[66]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[67]  S. Faber,et al.  Downsizing by shutdown in red galaxies , 2008, 0801.1673.

[68]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[69]  E. Quataert,et al.  Dynamical friction and galaxy merging time-scales , 2007, 0707.2960.

[70]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[71]  A. Cimatti,et al.  The rapid formation of a large rotating disk galaxy three billion years after the Big Bang , 2006, Nature.

[72]  K. van der Heyden,et al.  A new approach to the optimal target selection problem , 2006, astro-ph/0602338.

[73]  A. Dekel,et al.  Modelling the galaxy bimodality: shutdown above a critical halo mass , 2006, astro-ph/0601295.

[74]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[75]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[76]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[77]  A. Szalay,et al.  Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation , 2005, astro-ph/0506044.

[78]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[79]  P. P. van der Werf,et al.  The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.

[80]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[81]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[82]  R. Bender,et al.  The Epochs of Early-Type Galaxy Formation as a Function of Environment , 2004, astro-ph/0410209.

[83]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[84]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[85]  Padova,et al.  Formation times and masses of dark matter haloes , 2004, astro-ph/0402055.

[86]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[87]  J. Devriendt,et al.  galics– III. Properties of Lyman-break galaxies at a redshift of 3 , 2003, astro-ph/0310071.

[88]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[89]  R. Nichol,et al.  Early-type Galaxies in the Sloan Digital Sky Survey. II. Correlations between Observables , 2003, astro-ph/0301624.

[90]  R. Nichol,et al.  On Departures from a Power Law in the Galaxy Correlation Function , 2003, astro-ph/0301280.

[91]  G. Gavazzi,et al.  Spectrophotometry of Galaxies in the Virgo Cluster. I. The Star Formation History , 2002 .

[92]  H. Mo,et al.  Constraining galaxy formation and cosmology with the conditional luminosity function of galaxies , 2002, astro-ph/0207019.

[93]  R. Wechsler,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .

[94]  L. Wasserman,et al.  Fast Algorithms and Efficient Statistics: N-Point Correlation Functions , 2000, astro-ph/0012333.

[95]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[96]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[97]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[98]  R. Wechsler,et al.  Implications of Spikes in the Redshift Distribution of z ~ 3 Galaxies , 1998 .

[99]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[100]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[101]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[102]  O. Fèvre,et al.  The Canada-France Redshift Survey. VI. Evolution of the Galaxy Luminosity Function to Z approximately 1 , 1995, astro-ph/9507079.

[103]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[104]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[105]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[106]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[107]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[108]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[109]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[110]  A. Banday,et al.  Mining the Sky , 2001 .

[111]  M. Ross,et al.  Implications of Spikes in the Redshift Distribution of Z ∼ 3 Galaxies , 1997 .