A G ] 1 6 D ec 2 01 3 Degeneracy loci and polynomial equation solving 1

Let $$V$$V be a smooth, equidimensional, quasi-affine variety of dimension $$r$$r over $$\mathbb {C}$$C, and let $$F$$F be a $$(p\times s)$$(p×s) matrix of coordinate functions of $$\mathbb {C}[V]$$C[V], where $$s\ge p+r$$s≥p+r. The pair $$(V,F)$$(V,F) determines a vector bundle $$E$$E of rank $$s-p$$s-p over $$W:=\{x\in V \mid \mathrm{rk }F(x)=p\}$$W:={x∈V∣rkF(x)=p}. We associate with $$(V,F)$$(V,F) a descending chain of degeneracy loci of $$E$$E (the generic polar varieties of $$V$$V represent a typical example of this situation). The maximal degree of these degeneracy loci constitutes the essential ingredient for the uniform, bounded-error probabilistic pseudo-polynomial-time algorithm that we will design and that solves a series of computational elimination problems that can be formulated in this framework. We describe applications to polynomial equation solving over the reals and to the computation of a generic fiber of a dominant endomorphism of an affine space.

[1]  J. Eagon,et al.  Ideals defined by matrices and a certain complex associated with them , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[3]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[4]  Éric Schost,et al.  On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.

[5]  Jean-Charles Faugère,et al.  FGb: A Library for Computing Gröbner Bases , 2010, ICMS.

[6]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[7]  Wolfgang Vogel,et al.  Lectures on Results on Bezout’s Theorem , 1984 .

[8]  Melvin Hochster,et al.  R-SEQUENCES AND INDETERMINATES , 1974 .

[9]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[10]  Mohab Safey El Din,et al.  Strong bi-homogeneous Bézout theorem and its use in effective real algebraic geometry , 2006, ArXiv.

[11]  Marc Giusti,et al.  A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..

[12]  Walter D. Suijlekom,et al.  Frederic Paugam: “Towards the Mathematics of Quantum Field Theory” , 2015 .

[13]  Marc Giusti,et al.  Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces , 2012, Found. Comput. Math..

[14]  Guillermo Matera,et al.  Fast computation of a rational point of a variety over a finite field , 2004, Math. Comput..

[15]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[16]  Joos Heintz,et al.  Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.

[17]  M. Demazure Catastrophes et bifurcations , 1989 .

[18]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[19]  Marc Giusti,et al.  Generalized polar varieties and an efficient real elimination , 2004, Kybernetika.

[20]  D. Mumford The red book of varieties and schemes , 1988 .

[21]  D. Kirby,et al.  COMMUTATIVE RING THEORY (Cambridge Studies in Advanced Mathematics 8) , 1988 .

[22]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[23]  Marc Giusti,et al.  Generalized polar varieties: geometry and algorithms , 2005, J. Complex..

[24]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[25]  Joos Heintz,et al.  On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.

[26]  Kyriakos Kalorkoti ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .

[27]  Peter Bürgisser,et al.  The Complexity of Computing the Hilbert Polynomial of Smooth Equidimensional Complex Projective Varieties , 2005, Found. Comput. Math..

[28]  B. Bank,et al.  Polar varieties and efficient real elimination , 2000 .

[29]  I. Shafarevich Basic algebraic geometry , 1974 .

[30]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[31]  G. Laumon,et al.  A Series of Modern Surveys in Mathematics , 2000 .

[32]  Magali Bardet,et al.  Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie , 2004 .

[33]  Grégoire Lecerf,et al.  A concise proof of the Kronecker polynomial system solver from scratch , 2008 .

[34]  M. Reid,et al.  Commutative ring theory: Regular rings , 1987 .

[35]  Ragni Piene,et al.  Polar classes of singular varieties , 1978 .