A G ] 1 6 D ec 2 01 3 Degeneracy loci and polynomial equation solving 1
暂无分享,去创建一个
Marc Giusti | Joos Heintz | Pablo Solernó | Bernd Bank | Guillermo Matera | Grégoire Lecerf | B. Bank | M. Giusti | J. Heintz | P. Solernó | Grégoire Lecerf | G. Matera
[1] J. Eagon,et al. Ideals defined by matrices and a certain complex associated with them , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[2] Erich Kaltofen,et al. On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.
[3] Marc Giusti,et al. Lower bounds for diophantine approximations , 1997 .
[4] Éric Schost,et al. On the geometry of polar varieties , 2009, Applicable Algebra in Engineering, Communication and Computing.
[5] Jean-Charles Faugère,et al. FGb: A Library for Computing Gröbner Bases , 2010, ICMS.
[6] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[7] Wolfgang Vogel,et al. Lectures on Results on Bezout’s Theorem , 1984 .
[8] Melvin Hochster,et al. R-SEQUENCES AND INDETERMINATES , 1974 .
[9] Joos Heintz,et al. Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..
[10] Mohab Safey El Din,et al. Strong bi-homogeneous Bézout theorem and its use in effective real algebraic geometry , 2006, ArXiv.
[11] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[12] Walter D. Suijlekom,et al. Frederic Paugam: “Towards the Mathematics of Quantum Field Theory” , 2015 .
[13] Marc Giusti,et al. Algorithms of Intrinsic Complexity for Point Searching in Compact Real Singular Hypersurfaces , 2012, Found. Comput. Math..
[14] Guillermo Matera,et al. Fast computation of a rational point of a variety over a finite field , 2004, Math. Comput..
[15] Jacob T. Schwartz,et al. Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.
[16] Joos Heintz,et al. Testing polynomials which are easy to compute (Extended Abstract) , 1980, STOC '80.
[17] M. Demazure. Catastrophes et bifurcations , 1989 .
[18] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[19] Marc Giusti,et al. Generalized polar varieties and an efficient real elimination , 2004, Kybernetika.
[20] D. Mumford. The red book of varieties and schemes , 1988 .
[21] D. Kirby,et al. COMMUTATIVE RING THEORY (Cambridge Studies in Advanced Mathematics 8) , 1988 .
[22] Johan P. Hansen,et al. INTERSECTION THEORY , 2011 .
[23] Marc Giusti,et al. Generalized polar varieties: geometry and algorithms , 2005, J. Complex..
[24] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[25] Joos Heintz,et al. On the Time–Space Complexity of Geometric Elimination Procedures , 2001, Applicable Algebra in Engineering, Communication and Computing.
[26] Kyriakos Kalorkoti. ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .
[27] Peter Bürgisser,et al. The Complexity of Computing the Hilbert Polynomial of Smooth Equidimensional Complex Projective Varieties , 2005, Found. Comput. Math..
[28] B. Bank,et al. Polar varieties and efficient real elimination , 2000 .
[29] I. Shafarevich. Basic algebraic geometry , 1974 .
[30] J. E. Morais,et al. Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.
[31] G. Laumon,et al. A Series of Modern Surveys in Mathematics , 2000 .
[32] Magali Bardet,et al. Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie , 2004 .
[33] Grégoire Lecerf,et al. A concise proof of the Kronecker polynomial system solver from scratch , 2008 .
[34] M. Reid,et al. Commutative ring theory: Regular rings , 1987 .
[35] Ragni Piene,et al. Polar classes of singular varieties , 1978 .