Circuit Simulation of the Modified Lorenz System

We propose a novel three-dimensional autonomous chaotic system originating from the Lorenz chaotic system. With help of the theoretical analysis and the numerical simulation, the dynamic properties and characterization of this system are studied such as Hopf bifurcation etc.. In particular, fast Lyapunov indicator, small alignment indexes and Lyapunov exponent are used to estimate the effects on the dynamics, of varying parameter that correspond to ordered or chaotic orbits. It is found that increasing value of the parameter r always leads to the extent of chaos. Finally, by Multisim software, a chaotic electronic circuit is designed for the realization of the chaotic attractor, and along with the change of circuital resistor value, it gives almost the same rules of types of orbits as numerical ones.

[1]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[2]  Xin Wu,et al.  Resurvey of order and chaos in spinning compact binaries , 2008, 1004.5317.

[3]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[4]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[5]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[6]  Marcelo Schiffer,et al.  Geometry of Hamiltonian chaos. , 2007, Physical review letters.

[7]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Xin Wu,et al.  Analysis of New Four-Dimensional Chaotic Circuits with Experimental and numerical Methods , 2012, Int. J. Bifurc. Chaos.

[9]  Ch. Skokos,et al.  Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .

[10]  Guanrong Chen,et al.  A new hyperchaotic system and its circuit implementation , 2009 .

[11]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[12]  Levin Gravity waves, chaos, and spinning compact binaries , 2000, Physical review letters.

[13]  Fernando Roig,et al.  A COMPARISON BETWEEN METHODS TO COMPUTE LYAPUNOV EXPONENTS , 2001 .

[14]  Xin Wu,et al.  Revisit on ``Ruling out chaos in compact binary systems'' , 2007, 1004.5057.

[15]  Xin Wu,et al.  Is the Hamiltonian geometrical criterion for chaos always reliable , 2009 .

[16]  George Contopoulos,et al.  Order and Chaos in Dynamical Astronomy , 2002 .

[17]  O. Rössler An equation for hyperchaos , 1979 .

[18]  James Binney,et al.  Spectral stellar dynamics , 1982 .

[19]  Guanrong Chen,et al.  Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.

[20]  Ch. Skokos,et al.  Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .

[21]  Elena Lega,et al.  On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: a Very Sensitive Tool , 2000 .

[22]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[23]  Xin Wu,et al.  Lyapunov indices with two nearby trajectories in a curved spacetime , 2006, 1006.5251.

[24]  E. Lorenz Deterministic nonperiodic flow , 1963 .