Circuit Simulation of the Modified Lorenz System
暂无分享,去创建一个
[1] Jacques Laskar,et al. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .
[2] Xin Wu,et al. Resurvey of order and chaos in spinning compact binaries , 2008, 1004.5317.
[3] Giuseppe Grassi,et al. New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.
[4] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[5] L. Chua,et al. Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .
[6] Marcelo Schiffer,et al. Geometry of Hamiltonian chaos. , 2007, Physical review letters.
[7] Georg A. Gottwald,et al. A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[8] Xin Wu,et al. Analysis of New Four-Dimensional Chaotic Circuits with Experimental and numerical Methods , 2012, Int. J. Bifurc. Chaos.
[9] Ch. Skokos,et al. Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .
[10] Guanrong Chen,et al. A new hyperchaotic system and its circuit implementation , 2009 .
[11] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[12] Levin. Gravity waves, chaos, and spinning compact binaries , 2000, Physical review letters.
[13] Fernando Roig,et al. A COMPARISON BETWEEN METHODS TO COMPUTE LYAPUNOV EXPONENTS , 2001 .
[14] Xin Wu,et al. Revisit on ``Ruling out chaos in compact binary systems'' , 2007, 1004.5057.
[15] Xin Wu,et al. Is the Hamiltonian geometrical criterion for chaos always reliable , 2009 .
[16] George Contopoulos,et al. Order and Chaos in Dynamical Astronomy , 2002 .
[17] O. Rössler. An equation for hyperchaos , 1979 .
[18] James Binney,et al. Spectral stellar dynamics , 1982 .
[19] Guanrong Chen,et al. Bifurcation Control: Theories, Methods, and Applications , 2000, Int. J. Bifurc. Chaos.
[20] Ch. Skokos,et al. Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .
[21] Elena Lega,et al. On the Structure of Symplectic Mappings. The Fast Lyapunov Indicator: a Very Sensitive Tool , 2000 .
[22] G. Benettin,et al. Kolmogorov Entropy and Numerical Experiments , 1976 .
[23] Xin Wu,et al. Lyapunov indices with two nearby trajectories in a curved spacetime , 2006, 1006.5251.
[24] E. Lorenz. Deterministic nonperiodic flow , 1963 .