THz induced giant spin and valley currents

Spin and valley indices represent the key quantum labels of quasi-particles in a wide class of two-dimensional materials and form the foundational elements of the fields of spintronics and valleytronics. Control over these degrees of freedom, therefore, remains the central challenge in these fields. Here, we show that femtosecond laser light combining optical frequency circularly polarized pulse and a terahertz (THz) frequency linearly polarized pulse, a so-called “hencomb” pulse, can generate precisely tailored and 90% pure spin currents for the dichalcogenide WSe2 and >75% pure valley currents for bilayer graphene with gaps greater than 120 millielectron volts (dephasing time, 20 femtoseconds). The frequency of the circular light component and the polarization vector of the THz light component are shown to represent the key control parameters of these pulses. Our results thus open a route toward light control over spin/valley current states at ultrafast times.

[1]  Jianbo Yin,et al.  Tunable and giant valley-selective Hall effect in gapped bilayer graphene , 2022, Science.

[2]  H. B. Weber,et al.  Light-field control of real and virtual charge carriers , 2022, Nature.

[3]  Lei Wang,et al.  Ultrafast modulation of valley dynamics in multiple WS2 − Ag gratings strong coupling system , 2022, PhotoniX.

[4]  R. Pisarev,et al.  Terahertz light–driven coupling of antiferromagnetic spins to lattice , 2021, Science.

[5]  Sirshendu Gayen,et al.  Review of recent progress on THz spectroscopy of quantum materials: superconductors, magnetic and topological materials , 2021, The European Physical Journal Special Topics.

[6]  P. Brouwer,et al.  Ultrafast Demagnetization of Iron Induced by Optical versus Terahertz Pulses , 2021, Physical Review X.

[7]  J. K. Dewhurst,et al.  Ultrafast optical control over spin and momentum in solids , 2020, Applied Physics Letters.

[8]  A. Pugžlys,et al.  Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments , 2020, Nature Communications.

[9]  T. Kampfrath,et al.  Laser‐Driven Strong‐Field Terahertz Sources , 2019, Advanced Optical Materials.

[10]  Haitao Huang,et al.  Chiral Coupling of Valley Excitons and Light through Photonic Spin–Orbit Interactions , 2019, Advanced Optical Materials.

[11]  Hajime Ishihara,et al.  Optical selection rule of monolayer transition metal dichalcogenide by an optical vortex , 2019, Journal of Physics: Conference Series.

[12]  J. Shan,et al.  Light–valley interactions in 2D semiconductors , 2018, Nature Photonics.

[13]  Jonghwan Kim,et al.  Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures , 2018, Science.

[14]  Guanhua Chen,et al.  Stark control of electrons along nanojunctions , 2018, Nature Communications.

[15]  Zhihong Chen,et al.  Direct observation of valley-coupled topological current in MoS2 , 2018, Science Advances.

[16]  J. Fabian,et al.  Lightwave valleytronics in a monolayer of tungsten diselenide , 2018, Nature.

[17]  P. Erhart,et al.  Inverted valley polarization in optically excited transition metal dichalcogenides , 2018, Nature Communications.

[18]  Xiaodong Xu,et al.  Valleytronics in 2D materials , 2016 .

[19]  R. Norwood,et al.  Ultra-strong nonlinear optical processes and trigonal warping in MoS2 layers , 2016, Nature Communications.

[20]  H. B. Weber,et al.  Light-field-driven currents in graphene , 2016, Nature.

[21]  Yuang Wang,et al.  Nonlinear optical selection rule based on valley-exciton locking in monolayer ws2 , 2015, Light: Science & Applications.

[22]  Chendong Zhang,et al.  Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2. , 2014, Nano letters.

[23]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[24]  R. Arita,et al.  Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry. , 2014, Nature nanotechnology.

[25]  C. S. Chang,et al.  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature Communications.

[26]  Hongtao Yuan,et al.  Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. , 2014, Nature nanotechnology.

[27]  Li Yang,et al.  Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides , 2013, 1306.0620.

[28]  V. Apalkov,et al.  Optical-field-induced current in dielectrics , 2012, Nature.

[29]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[30]  Weihua Tang,et al.  First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers , 2011 .