Wind Turbine and Turbomachinery Computational Analysis with the ALE and Space-Time Variational Multiscale Methods and Isogeometric Discretization

The challenges encountered in computational analysis of wind turbines and turbomachinery include turbulent rotational ows, complex geometries, moving boundaries and interfaces, such as the rotor motion, and the uid structure interaction (FSI), such as the FSI between the wind turbine blade and the air. The Arbitrary Lagrangian Eulerian (ALE) and Space Time (ST) Variational Multiscale (VMS) methods and isogeometric discretization have been e ective in addressing these challenges. The ALE-VMS and ST-VMS serve as core computational methods. They are supplemented with special methods like the Slip Interface (SI) method and ST Isogeometric Analysis with NURBS basis functions in time. We describe the core and special methods and present, as examples of challenging computations performed, computational analysis of horizontaland vertical-axis wind turbines and ow-driven string dynamics in pumps.

[1]  Yuri Bazilevs,et al.  Experimental and numerical FSI study of compliant hydrofoils , 2015 .

[2]  Alessandro Corsini,et al.  Computer Modeling of Wave-Energy Air Turbines With the SUPG/PSPG Formulation and Discontinuity-Capturing Technique , 2012 .

[3]  Tayfun E. Tezduyar,et al.  Computational analysis of flow-driven string dynamics in a pump and residence time calculation , 2019 .

[4]  Tayfun E. Tezduyar,et al.  Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method , 2017 .

[5]  Yuri Bazilevs,et al.  Computational Cardiovascular Flow Analysis with the Variational Multiscale Methods , 2019, J. Adv. Eng. Comput..

[6]  Tayfun E. Tezduyar,et al.  A General-Purpose NURBS Mesh Generation Method for Complex Geometries , 2018 .

[7]  Yuri Bazilevs,et al.  Computational analysis methods for complex unsteady flow problems , 2019, Mathematical Models and Methods in Applied Sciences.

[8]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[9]  Tayfun E. Tezduyar,et al.  Space–time computations in practical engineering applications: a summary of the 25-year history , 2018, Computational Mechanics.

[10]  A. Korobenko,et al.  FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration , 2016 .

[11]  Marco S. Pigazzini,et al.  Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear , 2017 .

[12]  Tayfun E. Tezduyar,et al.  Element length calculation in B-spline meshes for complex geometries , 2020, Computational Mechanics.

[13]  Tayfun E. Tezduyar,et al.  New Directions in Space–Time Computational Methods , 2016 .

[14]  Yuri Bazilevs,et al.  High-performance computing of wind turbine aerodynamics using isogeometric analysis , 2011 .

[15]  Alessandro Corsini,et al.  Stabilized finite element computation of NOx emission in aero‐engine combustors , 2011 .

[16]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[17]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[18]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[19]  A. Korobenko,et al.  Recent Advances in ALE-VMS and ST-VMS Computational Aerodynamic and FSI Analysis of Wind Turbines , 2018 .

[20]  Tayfun E. Tezduyar,et al.  Anatomically realistic lumen motion representation in patient-specific space–time isogeometric flow analysis of coronary arteries with time-dependent medical-image data , 2020, Computational Mechanics.

[21]  A. L. Marsden,et al.  Computation of residence time in the simulation of pulsatile ventricular assist devices , 2014 .

[22]  Xiaowei Deng,et al.  Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines , 2017 .

[23]  Kenji Takizawa,et al.  FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta , 2014 .

[24]  Anindya Ghoshal,et al.  Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling , 2017 .

[25]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[26]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[27]  Kenji Takizawa,et al.  Computer modeling techniques for flapping-wing aerodynamics of a locust , 2013 .

[28]  Tayfun E. Tezduyar,et al.  Estimation of Element-Based Zero-Stress State in Arterial FSI Computations with Isogeometric Wall Discretization , 2018 .

[29]  Tayfun E. Tezduyar,et al.  Heart Valve Flow Computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) Method and Isogeometric Analysis (IGA) , 2018 .

[30]  Tayfun E. Tezduyar,et al.  Mesh refinement influence and cardiac-cycle flow periodicity in aorta flow analysis with isogeometric discretization , 2019, Computers & Fluids.

[31]  T. Tezduyar,et al.  Computational analysis of performance deterioration of a wind turbine blade strip subjected to environmental erosion , 2019, Computational Mechanics.

[32]  Tayfun E. Tezduyar,et al.  METHODS FOR FSI MODELING OF SPACECRAFT PARACHUTE DYNAMICS AND COVER SEPARATION , 2013 .

[33]  Tayfun E. Tezduyar,et al.  Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity , 2017 .

[34]  Yuri Bazilevs,et al.  Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method , 2020 .

[35]  Yuri Bazilevs,et al.  Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation , 2011 .

[36]  Thomas J. R. Hughes,et al.  NURBS-based isogeometric analysis for the computation of flows about rotating components , 2008 .

[37]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[38]  Yuri Bazilevs,et al.  Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models , 2015, Computational mechanics.

[39]  Tayfun E. Tezduyar,et al.  Space–time techniques for computational aerodynamics modeling of flapping wings of an actual locust , 2012 .

[40]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[41]  Xiao Yun Xu,et al.  Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates , 2014 .

[42]  Tayfun E. Tezduyar,et al.  Space–time VMS flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle , 2019, Computational Mechanics.

[43]  Tayfun E. Tezduyar,et al.  A Geometrical-Characteristics Study in Patient-Specific FSI Analysis of Blood Flow in the Thoracic Aorta , 2016 .

[44]  Tayfun E. Tezduyar,et al.  Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC) , 2016 .

[45]  A. Korobenko,et al.  STRUCTURAL MECHANICS MODELING AND FSI SIMULATION OF WIND TURBINES , 2013 .

[46]  Hitoshi Hattori,et al.  Computational analysis of flow-driven string dynamics in turbomachinery , 2017 .

[47]  Tayfun E. Tezduyar,et al.  Estimation of element-based zero-stress state for arterial FSI computations , 2014 .

[48]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[49]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[50]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[51]  Tayfun E. Tezduyar,et al.  Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms , 2013 .

[52]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[53]  Tayfun E. Tezduyar,et al.  Aorta zero-stress state modeling with T-spline discretization , 2018, Computational Mechanics.

[54]  T. Tezduyar,et al.  Particle tracking and particle–shock interaction in compressible-flow computations with the V-SGS stabilization and $$YZ\beta $$YZβ shock-capturing , 2015 .

[55]  A. Korobenko,et al.  Computer Modeling of Wind Turbines: 1. ALE-VMS and ST-VMS Aerodynamic and FSI Analysis , 2018, Archives of Computational Methods in Engineering.

[56]  Tayfun E. Tezduyar,et al.  A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery , 2019 .

[57]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[58]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle , 2012 .

[59]  A. Korobenko,et al.  Aerodynamic Simulation of Vertical-Axis Wind Turbines , 2014 .

[60]  Alessandro Corsini,et al.  A Multiscale Finite Element Formulation With Discontinuity Capturing for Turbulence Models With Dominant Reactionlike Terms , 2009 .

[61]  Kenji Takizawa,et al.  Computational thermo-fluid analysis of a disk brake , 2016 .

[62]  Tayfun E. Tezduyar,et al.  Turbocharger turbine and exhaust manifold flow computation with the Space–Time Variational Multiscale Method and Isogeometric Analysis , 2019, Computers & Fluids.

[63]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[64]  Yuri Bazilevs,et al.  Shape optimization of pulsatile ventricular assist devices using FSI to minimize thrombotic risk , 2014 .

[65]  Tayfun E. Tezduyar,et al.  Space-Time Computational Techniques for the Aerodynamics of Flapping Wings , 2012 .

[66]  Tayfun E. Tezduyar,et al.  Computation of Inviscid Supersonic Flows Around Cylinders and Spheres With the V-SGS Stabilization and YZβ Shock-Capturing , 2009 .

[67]  Pablo A. Kler,et al.  SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems , 2013 .

[68]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[69]  Tayfun E. Tezduyar,et al.  Space–time Isogeometric flow analysis with built-in Reynolds-equation limit , 2019, Mathematical Models and Methods in Applied Sciences.

[70]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[71]  Yuri Bazilevs,et al.  Isogeometric rotation-free bending-stabilized cables: Statics, dynamics, bending strips and coupling with shells , 2013 .

[72]  Tayfun E. Tezduyar,et al.  Isogeometric hyperelastic shell analysis with out-of-plane deformation mapping , 2018, Computational Mechanics.

[73]  Tayfun E. Tezduyar,et al.  Space–time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters , 2011 .

[74]  Evgueni I. Kassianov,et al.  Estimation of a , 2007 .

[75]  T. Tezduyar,et al.  Stabilized space–time computation of wind-turbine rotor aerodynamics , 2011 .

[76]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[77]  Tayfun E. Tezduyar,et al.  Compressible-flow geometric-porosity modeling and spacecraft parachute computation with isogeometric discretization , 2018, Computational Mechanics.

[78]  Tayfun E. Tezduyar,et al.  Methods for computation of flow-driven string dynamics in a pump and residence time , 2019, Mathematical Models and Methods in Applied Sciences.

[79]  Alessandro Corsini,et al.  Computational analysis of noise reduction devices in axial fans with stabilized finite element formulations , 2012 .

[80]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[81]  Tayfun E. Tezduyar,et al.  Aorta flow analysis and heart valve flow and structure analysis , 2018 .

[82]  Tayfun E. Tezduyar,et al.  Tire aerodynamics with actual tire geometry, road contact and tire deformation , 2018, Computational Mechanics.

[83]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[84]  Alessandro Corsini,et al.  Computational analysis of wind-turbine blade rain erosion , 2016 .

[85]  Alessandro Corsini,et al.  A variational multiscale method for particle-cloud tracking in turbomachinery flows , 2014 .

[86]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[87]  Tayfun E. Tezduyar,et al.  Medical-image-based aorta modeling with zero-stress-state estimation , 2019, Computational Mechanics.

[88]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[89]  Yuri Bazilevs,et al.  ALE and Space–Time Variational Multiscale Isogeometric Analysis of Wind Turbines and Turbomachinery , 2020 .

[90]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[91]  Tayfun E. Tezduyar,et al.  Space–Time Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation , 2018 .

[92]  Yuri Bazilevs,et al.  Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid-thin structure interaction analysis, with application to heart valve modeling , 2017, Comput. Math. Appl..

[93]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014 .

[94]  Tayfun E. Tezduyar,et al.  Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes , 2014 .

[95]  A. Korobenko,et al.  A new variational multiscale formulation for stratified incompressible turbulent flows , 2017 .

[96]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[97]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[98]  A. Korobenko,et al.  FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow , 2017 .

[99]  S.S. Venkata,et al.  Wind energy explained: Theory, Design, and application [Book Review] , 2003, IEEE Power and Energy Magazine.

[100]  Yuri Bazilevs,et al.  Fluid–structure interaction simulation of pulsatile ventricular assist devices , 2013, Computational Mechanics.

[101]  Yuri Bazilevs,et al.  Using ALE-VMS to compute aerodynamic derivatives of bridge sections , 2019, Computers & Fluids.

[102]  Yuki Ueda,et al.  A node-numbering-invariant directional length scale for simplex elements , 2019, Mathematical Models and Methods in Applied Sciences.

[103]  Tayfun E. Tezduyar,et al.  Special methods for aerodynamic-moment calculations from parachute FSI modeling , 2015 .

[104]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[105]  Tayfun E. Tezduyar,et al.  Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations , 2018 .

[106]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[107]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[108]  Yuri Bazilevs,et al.  Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment , 2014 .

[109]  Tayfun E. Tezduyar,et al.  Space–time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film , 2019, Computational Mechanics.

[110]  Tayfun E. Tezduyar,et al.  SPACE–TIME VMS METHODS FOR MODELING OF INCOMPRESSIBLE FLOWS AT HIGH REYNOLDS NUMBERS , 2013 .

[111]  Yuri Bazilevs,et al.  Aerodynamic and FSI Analysis of Wind Turbines with the ALE-VMS and ST-VMS Methods , 2014 .

[112]  Tayfun E. Tezduyar,et al.  FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes , 2014 .

[113]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part I: Geometry modeling and aerodynamics , 2011 .

[114]  Tayfun E. Tezduyar,et al.  FSI modeling of the Orion spacecraft drogue parachutes , 2015 .

[115]  Yuri Bazilevs,et al.  New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods , 2015 .

[116]  Alessandro Corsini,et al.  A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors , 2010 .

[117]  T. Tezduyar,et al.  Space–time computation techniques with continuous representation in time (ST-C) , 2014 .

[118]  Yuri Bazilevs,et al.  Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS , 2012 .

[119]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[120]  Tayfun E. Tezduyar,et al.  Aorta modeling with the element-based zero-stress state and isogeometric discretization , 2017 .

[121]  T. Hughes,et al.  Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to fluid–structure interaction , 2018, Mathematical Models and Methods in Applied Sciences.

[122]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[123]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[124]  Tayfun E. Tezduyar,et al.  Computational Methods for Parachute Fluid–Structure Interactions , 2012 .

[125]  Yuri Bazilevs,et al.  Fluid–structure interaction modeling of wind turbines: simulating the full machine , 2012, Computational Mechanics.

[126]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[127]  Anindya Ghoshal,et al.  An interactive geometry modeling and parametric design platform for isogeometric analysis , 2015, Comput. Math. Appl..

[128]  Yuri Bazilevs,et al.  3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades , 2011 .

[129]  Tayfun E. Tezduyar,et al.  Ventricle-valve-aorta flow analysis with the Space–Time Isogeometric Discretization and Topology Change , 2020, Computational Mechanics.

[130]  Yuri Bazilevs,et al.  Isogeometric Modeling and Experimental Investigation of Moving-Domain Bridge Aerodynamics , 2019, Journal of Engineering Mechanics.

[131]  Kenji Takizawa,et al.  ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling , 2014 .

[132]  Kenji Takizawa,et al.  Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent , 2012, Computational Mechanics.

[133]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[134]  Yuri Bazilevs,et al.  Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis , 2017 .

[135]  Yuri Bazilevs,et al.  Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics , 2012 .

[136]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .