Sparse 3D reconstructions in electrical impedance tomography using real data

Abstract We present a 3D reconstruction algorithm with sparsity constraints for electrical impedance tomography (EIT). EIT is the inverse problem of determining the distribution of conductivity in the interior of an object from simultaneous measurements of currents and voltages on its boundary. The feasibility of the sparsity reconstruction approach is tested with real data obtained from a new planar EIT device developed at the Institut für Physik, Johannes Gutenberg Universität, Mainz, Germany. The complete electrode model is adapted for the given device to handle incomplete measurements and the inhomogeneities of the conductivity are a priori assumed to be sparse with respect to a certain basis. This prior information is incorporated into a Tikhonov-type functional by including a sparsity-promoting -regularization term. The functional is minimized with an iterative soft shrinkage-type algorithm.

[1]  C. Sebu,et al.  Conductivity reconstructions using real data from a new planar electrical impedance tomography device , 2013 .

[2]  Jari P. Kaipio,et al.  Sparsity reconstruction in electrical impedance tomography: An experimental evaluation , 2012, J. Comput. Appl. Math..

[3]  Bangti Jin,et al.  A reconstruction algorithm for electrical impedance tomography based on sparsity regularization , 2012 .

[4]  C. Sebu,et al.  Conductivity imaging with interior potential measurements , 2011 .

[5]  Dirk A. Lorenz,et al.  A generalized conditional gradient method and its connection to an iterative shrinkage method , 2009, Comput. Optim. Appl..

[6]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[7]  D. Lorenz,et al.  Convergence rates and source conditions for Tikhonov regularization with sparsity constraints , 2008, 0801.1774.

[8]  N I Grinberg,et al.  The Factorization Method for Inverse Problems , 2007 .

[9]  Dirk A. Lorenz,et al.  A generalized conditional gradient method for nonlinear operator equations with sparsity constraints , 2007 .

[10]  Martin Hanke,et al.  The Factorization Method for Electrical Impedance Tomography Data from a New Planar Device , 2007, Int. J. Biomed. Imaging.

[11]  Stefan Finsterle,et al.  Approximation errors and truncation of computational domains with application to geophysical tomography , 2007 .

[12]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: a numerical study , 2006 .

[13]  Ronny Ramlau,et al.  A Tikhonov-based projection iteration for nonlinear Ill-posed problems with sparsity constraints , 2006, Numerische Mathematik.

[14]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[15]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[16]  P. Maass,et al.  Tikhonov regularization for electrical impedance tomography on unbounded domains , 2003 .

[17]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[18]  J.P. Kaipio,et al.  Three-dimensional electrical impedance tomography based on the complete electrode model , 1999, IEEE Transactions on Biomedical Engineering.

[19]  Jari P. Kaipio,et al.  Tikhonov regularization and prior information in electrical impedance tomography , 1998, IEEE Transactions on Medical Imaging.

[20]  Mi Wang,et al.  Electrical resistance tomography for process applications , 1996 .

[21]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[22]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[23]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[24]  B. Brown,et al.  Applied potential tomography. , 1989, Journal of the British Interplanetary Society.

[25]  Willis J. Tompkins,et al.  Comparing Reconstruction Algorithms for Electrical Impedance Tomography , 1987, IEEE Transactions on Biomedical Engineering.

[26]  J. Kaipio,et al.  Electrical Resistance Tomography Imaging of Concrete , 2010 .

[27]  F. Santosa,et al.  ENHANCED ELECTRICAL IMPEDANCE TOMOGRAPHY VIA THE MUMFORD{SHAH FUNCTIONAL , 2001 .

[28]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .