On Some Optimization Problems in Obnoxious Facility Location
暂无分享,去创建一个
[1] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[2] L. Kucera,et al. Randomized incremental construction of abstract Voronoi diagrams , 1993 .
[3] Chak-Kuen Wong,et al. Voronoi Diagrams in L1 (Linfty) Metrics with 2-Dimensional Storage Applications , 1980, SIAM J. Comput..
[4] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[5] Chak-Kuen Wong,et al. On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..
[6] Patric R. J. Östergård,et al. Packing up to 50 Equal Circles in a Square , 1997, Discret. Comput. Geom..
[7] Tomás Feder,et al. Optimal algorithms for approximate clustering , 1988, STOC '88.
[8] Franco P. Preparata,et al. Computational Geometry , 1985, Texts and Monographs in Computer Science.
[9] Luc Devroye,et al. A Note on Point Location in Delaunay Triangulations of Random Points , 1998, Algorithmica.
[10] Franz Aurenhammer,et al. An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..
[11] Olivier Devillers,et al. Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1992, Comput. Geom..
[12] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[13] Mariette Yvinec,et al. Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..
[14] D. T. Lee,et al. Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.
[15] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[16] Ernst P. Mücke,et al. Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations , 1996, SCG '96.