On Some Optimization Problems in Obnoxious Facility Location

In this paper we study the following general MaxMin-optimization problem concerning undesirable (obnoxious) facility location: Given a set of n sites S inside a convex region P, construct m garbage deposit sites Vm such that the minimum distance between these sites Vm and the union of S and Vm, Vm ∪ S, is maximized. We present a general method using Voronoi diagrams to approximately solve two such problems when the sites S's are points and weighted convex polygons (correspondingly, Vm's are points and weighted points and the distances are L2 and weighted respectively). In the latter case we generalize the Voronoi diagrams for disjoint weighted convex polygons in the plane. Our algorithms run in polynomial time and approximate the optimal solutions of the above two problems by a factor of 2.

[1]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[2]  L. Kucera,et al.  Randomized incremental construction of abstract Voronoi diagrams , 1993 .

[3]  Chak-Kuen Wong,et al.  Voronoi Diagrams in L1 (Linfty) Metrics with 2-Dimensional Storage Applications , 1980, SIAM J. Comput..

[4]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[5]  Chak-Kuen Wong,et al.  On Some Distance Problems in Fixed Orientations , 1987, SIAM J. Comput..

[6]  Patric R. J. Östergård,et al.  Packing up to 50 Equal Circles in a Square , 1997, Discret. Comput. Geom..

[7]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[8]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[9]  Luc Devroye,et al.  A Note on Point Location in Delaunay Triangulations of Random Points , 1998, Algorithmica.

[10]  Franz Aurenhammer,et al.  An optimal algorithm for constructing the weighted voronoi diagram in the plane , 1984, Pattern Recognit..

[11]  Olivier Devillers,et al.  Fully Dynamic Delaunay Triangulation in Logarithmic Expected Time Per Operation , 1992, Comput. Geom..

[12]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[13]  Mariette Yvinec,et al.  Applications of random sampling to on-line algorithms in computational geometry , 1992, Discret. Comput. Geom..

[14]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[15]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[16]  Ernst P. Mücke,et al.  Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations , 1996, SCG '96.