Generalization and variations of Pellet's theorem for matrix polynomials

We derive a generalized matrix version of Pellet's theorem, itself based on a generalized Rouch\'{e} theorem for matrix-valued functions, to generate upper, lower, and internal bounds on the eigenvalues of matrix polynomials. Variations of the theorem are suggested to try and overcome situations where Pellet's theorem cannot be applied.

[1]  Suguru Arimoto,et al.  Generalized Rouche's theorem and its application to multivariate autoregressions , 1980 .

[2]  Dario Bini,et al.  Locating the Eigenvalues of Matrix Polynomials , 2012, SIAM J. Matrix Anal. Appl..

[3]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[4]  A.-E. Pellet Sur un mode de séparation des racines des équations et la formule de Lagrange , 1881 .

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Louis W. Ehrlich,et al.  A modified Newton method for polynomials , 1967, CACM.

[7]  Dario Bini,et al.  Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.

[8]  Karl Meerbergen,et al.  The Quadratic Eigenvalue Problem , 2001, SIAM Rev..

[9]  M. Marden Geometry of Polynomials , 1970 .

[10]  P. Vaidyanathan,et al.  A unified structural interpretation of some well-known stability-test procedures for linear systems , 1987, Proceedings of the IEEE.

[11]  N. Higham,et al.  Bounds for eigenvalues of matrix polynomials , 2003 .

[12]  Aaron Melman Implementation of Pellet’s theorem , 2013, Numerical Algorithms.

[13]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[14]  S. Lang Complex Analysis , 1977 .

[15]  Peter Lancaster,et al.  Inversion of lambda-matrices and application to the theory of linear vibrations , 1960 .

[16]  I. Gohberg,et al.  AN OPERATOR GENERALIZATION OF THE LOGARITHMIC RESIDUE THEOREM AND THE THEOREM OF ROUCHÉ , 1971 .

[17]  Oliver Aberth,et al.  Iteration methods for finding all zeros of a polynomial simultaneously , 1973 .