Generalization and variations of Pellet's theorem for matrix polynomials
暂无分享,去创建一个
[1] Suguru Arimoto,et al. Generalized Rouche's theorem and its application to multivariate autoregressions , 1980 .
[2] Dario Bini,et al. Locating the Eigenvalues of Matrix Polynomials , 2012, SIAM J. Matrix Anal. Appl..
[3] Peter Lancaster,et al. Lambda-matrices and vibrating systems , 2002 .
[4] A.-E. Pellet. Sur un mode de séparation des racines des équations et la formule de Lagrange , 1881 .
[5] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[6] Louis W. Ehrlich,et al. A modified Newton method for polynomials , 1967, CACM.
[7] Dario Bini,et al. Numerical computation of polynomial zeros by means of Aberth's method , 1996, Numerical Algorithms.
[8] Karl Meerbergen,et al. The Quadratic Eigenvalue Problem , 2001, SIAM Rev..
[9] M. Marden. Geometry of Polynomials , 1970 .
[10] P. Vaidyanathan,et al. A unified structural interpretation of some well-known stability-test procedures for linear systems , 1987, Proceedings of the IEEE.
[11] N. Higham,et al. Bounds for eigenvalues of matrix polynomials , 2003 .
[12] Aaron Melman. Implementation of Pellet’s theorem , 2013, Numerical Algorithms.
[13] I. Gohberg,et al. Classes of Linear Operators , 1990 .
[14] S. Lang. Complex Analysis , 1977 .
[15] Peter Lancaster,et al. Inversion of lambda-matrices and application to the theory of linear vibrations , 1960 .
[16] I. Gohberg,et al. AN OPERATOR GENERALIZATION OF THE LOGARITHMIC RESIDUE THEOREM AND THE THEOREM OF ROUCHÉ , 1971 .
[17] Oliver Aberth,et al. Iteration methods for finding all zeros of a polynomial simultaneously , 1973 .