Computational electromagnetics for design optimisation: the state of the art and conjectures for the future

The paper reviews the state of the art in modern field simulation techniques available to assist in the design and performance prediction of electromechanical and electromagnetic devices. Commercial software packages, usually exploiting finite element and/or related techniques, provide advanced and reliable tools for every-day use in the design office. At the same time Computational Electromagnetics continues to be a thriving area of research with emerging new techniques and methods, in particular for multi-physics applications and in the area of multi-objective optimisation.

[1]  J.K. Sykulski,et al.  Applying continuum design sensitivity analysis combined with standard EM software to shape optimization in magnetostatic problems , 2004, IEEE Transactions on Magnetics.

[2]  D. Rodger,et al.  Coupled elements for problems involving movement (switched reluctance motor) , 1990 .

[3]  S. McFee,et al.  A tunable volume integration formulation for force calculation in finite-element based computational magnetostatics , 1988 .

[4]  Igor Tsukerman,et al.  Overlapping finite elements for problems with movement , 1992, 1992. Digests of Intermag. International Magnetics Conference.

[5]  Jan K. Sykulski,et al.  A new approach to modelling dominant AC loss in HTc superconducting solenoidal windings , 1999 .

[6]  K. F. Goddard,et al.  High temperature superconducting power transformers: conclusions from a design study , 1999 .

[7]  Jan K. Sykulski,et al.  New trends in optimization in electromagnetics , 2008 .

[8]  R. V. Southwell,et al.  Relaxation Methods in Theoretical Physics , 1947 .

[9]  Jan K. Sykulski Computer package for calculating electric and magnetic fields exploiting dual energy bounds , 1988 .

[10]  Dong-Hun Kim,et al.  A Sensitivity Approach to Force Calculation in Electrostatic MEMS Devices , 2008, IEEE Transactions on Magnetics.

[11]  P. Hammond,et al.  Calculation of inductance and capaci-tance by means of dual energy principles , 1976 .

[12]  Theodoros D. Tsiboukis,et al.  Multiparametric vector finite elements: a systematic approach to the construction of three-dimensional, higher order, tangential vector shape functions , 1996 .

[13]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[14]  Dong-Hun Kim,et al.  Efficient Global and Local Force Calculations Based on Continuum Sensitivity Analysis , 2007, IEEE Transactions on Magnetics.

[15]  A. Kost,et al.  Error estimation and adaptive mesh generation in the 2D and 3D finite element method , 1996 .

[16]  A.G. Jack,et al.  Permanent magnet machines with powdered iron cores and pre-pressed windings , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[17]  Z. J. Cendes,et al.  Magnetic field computation using Delaunay triangulation and complementary finite element methods , 1983 .

[18]  Andy J. Keane,et al.  Statistical Improvement Criteria for Use in Multiobjective Design Optimization , 2006 .

[19]  K. F. Goddard,et al.  Finite-element assisted method to reduce harmonic content in the air-gap flux density of a high-temperature superconducting coreless rotor generator , 2008 .

[20]  A. M. Winslow NUMERICAL CALCULATION OF STATIC MAGNETIC FIELDS IN AN IRREGULAR TRIANGLE MESH , 1964 .

[21]  P. P. Silvester,et al.  Computer-aided design in magnetics , 1985 .

[22]  E. M. Freeman,et al.  A novel mapping technique for open boundary finite element solutions to Poisson's equation , 1988 .

[23]  Ronnie Belmans,et al.  Numerical modelling and design of electrical machines and devices , 1999 .

[24]  L. Lebensztajn,et al.  Kriging: a useful tool for electromagnetic device optimization , 2004, IEEE Transactions on Magnetics.

[25]  C. J. Carpenter,et al.  Surface-integral methods of calculating forces on magnetized iron parts , 1960 .

[26]  Jan K. Sykulski,et al.  Calculation of inducted currents using edge elements and T-T0 formulation , 2008 .

[27]  S. Wakao,et al.  Large-scale analysis of eddy-current problems by the hybrid finite element-boundary element method combined with the fast multipole method , 2006, IEEE Transactions on Magnetics.

[28]  P. Silvester High-order polynomial triangular finite elements for potential problems , 1969 .

[29]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[30]  J.-C. Verite,et al.  A mixed fem-biem method to solve 3-D eddy-current problems , 1982 .

[31]  Enzo Tonti,et al.  Finite formulation of electromagnetic field , 2002 .

[32]  J. Coulomb,et al.  Finite element implementation of virtual work principle for magnetic or electric force and torque computation , 1984 .

[33]  Luc Dupré,et al.  Electromagnetic hysteresis modelling: from material science to finite element analysis of devices , 2003 .

[34]  Dong-Hun Kim,et al.  Efficient force calculations based on continuum sensitivity analysis , 2005, IEEE Transactions on Magnetics.

[35]  J. Sykulski,et al.  A Scalarizing One-Stage Algorithm for Efficient Multi-Objective Optimization , 2008, IEEE Transactions on Magnetics.

[36]  Michael T. M. Emmerich,et al.  Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.

[37]  Graham R. Wood,et al.  Matching Stochastic Algorithms to Objective Function Landscapes , 2005, J. Glob. Optim..

[38]  J. C. Sabonnadiere,et al.  Finite element modeling of open boundary problems , 1990 .

[39]  Jan K. Sykulski,et al.  Smooth boundary topology optimization applied to an electrostatic actuator , 2008 .

[40]  R. L. Stoll,et al.  High temperature superconducting demonstrator transformer: design considerations and first test results , 1999, IEEE International Magnetics Conference.

[41]  Andrzej Demenko,et al.  Movement simulation in finite element analysis of electric machine dynamics , 1996 .

[42]  Dragan Poljak,et al.  Electrical Engineering and Electromagnetics VI , 2003 .

[43]  J.K. Sykulski,et al.  A novel scheme for material updating in source distribution optimization of magnetic devices using sensitivity analysis , 2005, IEEE Transactions on Magnetics.

[44]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[45]  T. Weiland Time Domain Electromagnetic Field Computation with Finite Difference Methods , 1996 .

[46]  R. L. Stoll The analysis of eddy currents , 1974 .

[47]  A. Bossavit Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism , 1988 .

[48]  Andy J. Keane,et al.  On the Design of Optimization Strategies Based on Global Response Surface Approximation Models , 2005, J. Glob. Optim..

[49]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[50]  Jan K. Sykulski,et al.  2D modeling of field diffusion and AC losses in high temperature superconducting tapes , 2000 .

[51]  Jan K. Sykulski,et al.  Engineering Electromagnetism: Physical Processes and Computation , 1994 .

[52]  Mouloud Feliachi,et al.  Conception of an air-gap element for the dynamic analysis of the electromagnetic field in electric machines , 1982 .

[53]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[54]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[55]  A. Demenko,et al.  Network Representation of Conducting Regions in 3-D Finite-Element Description of Electrical Machines , 2008, IEEE Transactions on Magnetics.

[56]  Luiz Lebensztajn,et al.  A multi‐objective analysis of a special switched reluctance motor , 2005 .

[57]  D. Baldomir,et al.  Differential forms and electromagnetism in 3-dimensional Euclidean space R3 , 1986 .

[58]  Jan K. Sykulski,et al.  A method of estimating the total AC loss in a high-temperature superconducting transformer winding , 2000 .

[59]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[60]  Ana Vukovic,et al.  Transmission line modelling using unstructured meshes , 2004 .

[61]  Alessandro Formisano,et al.  9th Workshop on Optimization and Inverse Problems in Electromagnetism (OIPE), Sorrento , 2007 .

[62]  Jan K. Sykulski,et al.  Magneto-electric network models in electromagnetism , 2006 .

[63]  W. G. Bickley,et al.  Relaxation Methods in Theoretical Physics , 1947 .

[64]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[65]  J.K. Sykulski,et al.  Alternative designs of a superconducting synchronous generator: the Southampton approach , 2008, 2008 18th International Conference on Electrical Machines.

[66]  A. B. J. Reece,et al.  Finite Element Methods in Electrical Power Engineering , 2000 .

[67]  Jan K. Sykulski,et al.  Design of a 100 kVA high temperature superconducting demonstration synchronous generator , 2002 .

[68]  K. Preis,et al.  On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems , 1996 .

[69]  J. Simkin,et al.  On the use of the total scalar potential on the numerical solution of fields problems in electromagnetics , 1979 .

[70]  C. Trowbridge,et al.  Some key developments in computational electromagnetics and their attribution , 2006, IEEE Transactions on Magnetics.

[71]  Jan K. Sykulski,et al.  Comparative study of evolution strategies combined with approximation techniques for practical electromagnetic optimization problems , 2001 .

[72]  Urmila M. Diwekar,et al.  An efficient sampling technique for off-line quality control , 1997 .

[73]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[74]  Jan K. Sykulski,et al.  Network equivalents of nodal and edge elements in electromagnetics , 2002 .

[75]  K. Hameyer,et al.  Electromagnetic force density in a ferromagnetic material , 2004, IEEE Transactions on Magnetics.

[76]  C. Trowbridge,et al.  The Analytical and Numerical Solution of Electric and Magnetic Fields , 1992 .

[77]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[78]  M. V. K. Chari,et al.  Finite-Element Analysis of Magnetically Saturated D-C Machines , 1971 .

[79]  Jan K. Sykulski,et al.  Evaluation of the front-fixing method capabilities for numerical modelling of diffusion in moving systems , 2008 .

[80]  Arnulf Kost,et al.  The Transmission Line Modelling Method (TLM) Applied to the Simulation of TEM Cells and Shielded Enclosures , 2006 .

[81]  Shinji Wakao,et al.  Erratum: Large-scale analysis of eddy-current problems by the hybrid finite element-boundary element method combined with the fast multipole method (IEEE Transactions on Magnetics) , 2006 .