Why Do Testate Amoeba Optima Related to Water Table Depth Vary?

[1]  Y. Mazei,et al.  Quantitative reconstruction of peatland hydrological regime with fossil testate amoebae communities , 2017, Russian Journal of Ecology.

[2]  J. Holden,et al.  Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology , 2016 .

[3]  A. Buttler,et al.  Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive , 2015, Quaternary Research.

[4]  Hongkai Li,et al.  A testate amoebae transfer function from Sphagnum-dominated peatlands in the Lesser Khingan Mountains, NE China , 2015, Journal of Paleolimnology.

[5]  G. MacDonald,et al.  Peatland paleohydrology in the southern West Siberian Lowlands: Comparison of multiple testate amoeba transfer functions, sites, and Sphagnum δ13C values , 2015 .

[6]  Y. Mazei,et al.  Testing the Effect of Refrigerated Storage on Testate Amoeba Samples , 2015, Microbial Ecology.

[7]  J. Holden,et al.  Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands , 2015 .

[8]  K. Marcisz,et al.  Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. , 2014, European journal of protistology.

[9]  T. Baker,et al.  Ecology of Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for Palaeohydrological Reconstruction , 2014, Microbial Ecology.

[10]  Ł. Lamentowicz,et al.  Towards quantitative reconstruction of peatland nutrient status from fens , 2013 .

[11]  G. Magnan,et al.  A testate amoeba-based transfer function for paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada , 2013 .

[12]  E. Lara,et al.  Ecology of testate amoebae in peatlands of central China and development of a transfer function for paleohydrological reconstruction , 2013, Journal of Paleolimnology.

[13]  P. Hájková,et al.  Formation, succession and landscape history of Central-European summit raised bogs: A multiproxy study from the Hrubý Jeseník Mountains , 2013 .

[14]  Paul D.M. Hughes,et al.  Statistical testing of a new testate amoeba‐based transfer function for water‐table depth reconstruction on ombrotrophic peatlands in north‐eastern Canada and Maine, United States , 2013 .

[15]  E. Mitchell,et al.  Fine-Scale Horizontal and Vertical Micro-distribution Patterns of Testate Amoebae Along a Narrow Fen/Bog Gradient , 2011, Microbial Ecology.

[16]  R. Payne Can testate amoeba‐based palaeohydrology be extended to fens? , 2011 .

[17]  K. Tan,et al.  Morphological variation and habitat selection of testate amoebae in Dajiuhu peatland, Central China , 2010 .

[18]  R. Payne Testate amoeba response to acid deposition in a Scottish peatland , 2010, Aquatic Ecology.

[19]  M. Gophen,et al.  Testate amoeba communities of the drained Hula wetland (Israel): implications for ecosystem development and conservation management , 2010, Wetlands Ecology and Management.

[20]  R. Booth,et al.  Testate amoebae and δ13C of Sphagnum as surface-moisture proxies in Alaskan peatlands , 2010 .

[21]  D. Charman,et al.  Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: Implications for Holocene palaeoclimate studies , 2009 .

[22]  E. Mitchell,et al.  Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future , 2008, Biodiversity and Conservation.

[23]  D. Charman,et al.  Holocene changes on a peatland in northwestern Ontario interpreted from testate amoebae (Protozoa) analysis , 2008 .

[24]  R. Booth Testate amoebae as proxies for mean annual water‐table depth in Sphagnum‐dominated peatlands of North America , 2008 .

[25]  E. Mitchell,et al.  Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland , 2007 .

[26]  E. Mitchell,et al.  Ecology of testate amoebae from mires in the Central Rhodope Mountains, Greece and development of a transfer function for palaeohydrological reconstruction. , 2007, Protist.

[27]  D. Charman,et al.  A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands , 2007 .

[28]  B. Tóthmérész,et al.  Reconstructing hydrological variability from testate amoebae analysis in Carpathian peatlands , 2006 .

[29]  P. Hughes,et al.  An 8500 cal. year multi-proxy climate record from a bog in eastern Newfoundland: contributions of meltwater discharge and solar forcing , 2006 .

[30]  E. Mitchell,et al.  Ecology of testate amoebae (Protista) in south-central Alaska peatlands: building transfer-function models for palaeoenvironmental studies , 2006 .

[31]  Douglas A. Wilcox,et al.  Discoloration of polyvinyl chloride (PVC) tape as a proxy for water‐table depth in peatlands: validation and assessment of seasonal variability , 2005 .

[32]  E. Mitchell,et al.  The Ecology of Testate Amoebae (Protists) in Sphagnum in North-western Poland in Relation to Peatland Ecology , 2005, Microbial Ecology.

[33]  R. Booth,et al.  Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan , 2004, Quaternary Research.

[34]  A. Rakhleeva Testaceans (Testacea, Protozoa) of Taiga Soils in Western Siberia (Surgut Polesye) , 2002, Biology Bulletin of the Russian Academy of Sciences.

[35]  R. Booth Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration , 2002 .

[36]  R. Booth Ecology of testate amoebae (protozoa) in two Lake Superior coastal wetlands: Implications for paleoecology and environmental monitoring , 2001, Wetlands.

[37]  A. Buttler,et al.  Horizontal Distribution Patterns of Testate Amoebae (Protozoa) in a Sphagnum magellanicum Carpet , 2000, Microbial Ecology.

[38]  D. Charman,et al.  Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. , 1999, Protist.

[39]  P. Sims,et al.  Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae , 1998 .

[40]  D. Charman Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands , 1997 .

[41]  D. Charman,et al.  The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat , 1997 .

[42]  B. Warner,et al.  Ecology of Testaceans (Protozoa: Rhizopoda) in Mires in Southern Finland: I. Autecology , 1992 .

[43]  O. W. Heal THE DISTRIBUTION OF TESTATE AMOEBAE (RHIZOPODA: TESTACEA) IN SOME FENS AND BOGS IN NORTHERN ENGLAND , 1961 .

[44]  D. Charman,et al.  Comparing regional and supra-regional transfer functions for palaeohydrological reconstruction from Holocene peatlands , 2013 .

[45]  S. Juggins rioja: Analysis of Quaternary Science Data , 2012 .

[46]  P. Legendre,et al.  vegan : Community Ecology Package. R package version 1.8-5 , 2007 .

[47]  M. Hájek,et al.  The Variation of Testacean Assemblages (Rhizopoda) Along the Complete Base-Richness Gradient in Fens: A Case Study from the Western Carpathians , 2006 .

[48]  K. E. Freyb,et al.  Peatlands of the Western Siberian lowlands : current knowledge on zonation , carbon content and Late Quaternary history , 2003 .

[49]  M. Hoosbeek,et al.  Relationships among testate amoebae (Protozoa), vegetation and water chemistry in five Sphagnum-dominated peatlands in Europe , 2000 .

[50]  A. Buttler,et al.  Ecology of testate amoebae (Protozoa : Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France , 1999 .

[51]  L. Beyens,et al.  New testate amoebae taxa from the Polar Regions , 1997 .