How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high‐resolution crystal structures

Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA‐binding domains (Dbds) form independent structural units. Despite these similarities, TRF1 and TRF2 have different functions at telomeres. The X‐ray crystal structures of both TRF1‐ and TRF2‐Dbds in complex with telomeric DNA (2.0 and 1.8 Å resolution, respectively) show that they recognize the same TAGGGTT binding site by means of homeodomains, as does the yeast telomeric protein Rap1p. Two of the three G‐C base pairs that characterize telomeric repeats are recognized specifically and an unusually large number of water molecules mediate protein–DNA interactions. The binding of the TRF2‐Dbd to the DNA double helix shows no distortions that would account for the promotion of t‐loops in which TRF2 has been implicated.

[1]  B. van Steensel,et al.  Control of Human Telomere Length by TRF1 and TRF2 , 2000, Molecular and Cellular Biology.

[2]  D. Rhodes,et al.  Recognition of telomeric DNA. , 1997, Trends in biochemical sciences.

[3]  J. Abrahams,et al.  Methods used in the structure determination of bovine mitochondrial F1 ATPase. , 1996, Acta crystallographica. Section D, Biological crystallography.

[4]  T. Lange,et al.  Identification of Human Rap1 Implications for Telomere Evolution , 2000, Cell.

[5]  T. de Lange,et al.  Unusual chromatin in human telomeres , 1994, Molecular and cellular biology.

[6]  E. Gilson,et al.  Role of the telomeric DNA-binding protein TRF2 in the stability of human chromosome ends. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  T. Lange T-loops and the origin of telomeres , 2004, Nature Reviews Molecular Cell Biology.

[8]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[9]  E. Gilson,et al.  The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. , 1996, Nucleic acids research.

[10]  J. Griffith,et al.  T‐loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang , 2001, The EMBO journal.

[11]  D. Broccoli,et al.  p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. , 1999, Science.

[12]  T. Lange Protection of mammalian telomeres , 2002, Oncogene.

[13]  J. Campisi,et al.  TIN2 Mediates Functions of TRF2 at Human Telomeres* , 2004, Journal of Biological Chemistry.

[14]  H. Drew,et al.  Sequence periodicities in chicken nucleosome core DNA. , 1986, Journal of molecular biology.

[15]  A. Smogorzewska,et al.  Regulation of telomerase by telomeric proteins. , 2004, Annual review of biochemistry.

[16]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[17]  D. Rhodes,et al.  Sequence-specific DNA recognition by the myb-like domain of the human telomere binding protein TRF1: a model for the protein-DNA complex. , 1998, Nucleic acids research.

[18]  D. Rhodes,et al.  Solution structure of a telomeric DNA complex of human TRF1. , 2001, Structure.

[19]  Jun Qin,et al.  PTOP interacts with POT1 and regulates its localization to telomeres , 2004, Nature Cell Biology.

[20]  D. Broccoli,et al.  Human telomeres contain two distinct Myb–related proteins, TRF1 and TRF2 , 1997, Nature Genetics.

[21]  A. Sarai,et al.  The tryptophan cluster: a hypothetical structure of the DNA-binding domain of the myb protooncogene product. , 1990, The Journal of biological chemistry.

[22]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[23]  Peter König,et al.  The Crystal Structure of the DNA-Binding Domain of Yeast RAP1 in Complex with Telomeric DNA , 1996, Cell.

[24]  L. Chapman,et al.  Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. , 2001, Molecular cell.

[25]  S. Lejnine,et al.  Conserved nucleoprotein structure at the ends of vertebrate and invertebrate chromosomes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  G J Kleywegt,et al.  xdlMAPMAN and xdlDATAMAN - programs for reformatting, analysis and manipulation of biomacromolecular electron-density maps and reflection data sets. , 1996, Acta crystallographica. Section D, Biological crystallography.

[27]  Susan Smith,et al.  TRF1 is a dimer and bends telomeric DNA , 1997, The EMBO journal.

[28]  Y. Nishimura,et al.  Solution structure of the DNA-binding domain of human telomeric protein, hTRF1. , 1998, Structure.

[29]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[30]  J. Griffith,et al.  TRF1 binds a bipartite telomeric site with extreme spatial flexibility , 1999, The EMBO journal.

[31]  E. Gilson,et al.  Telomeric localization of TRF2, a novel human telobox protein , 1997, Nature Genetics.

[32]  B. Chait,et al.  POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. , 2004, Genes & development.

[33]  Bas van Steensel,et al.  Control of telomere length by the human telomeric protein TRF1 , 1997, Nature.

[34]  Tatiana Nikitina,et al.  Closed chromatin loops at the ends of chromosomes , 2004, The Journal of cell biology.

[35]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[36]  L. Chapman,et al.  Telomere architecture , 2002, EMBO reports.

[37]  J. Griffith,et al.  Mammalian Telomeres End in a Large Duplex Loop , 1999, Cell.

[38]  A. Sarai,et al.  Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Lavery,et al.  Defining the structure of irregular nucleic acids: conventions and principles. , 1989, Journal of biomolecular structure & dynamics.

[40]  Bas van Steensel,et al.  TRF2 Protects Human Telomeres from End-to-End Fusions , 1998, Cell.