Plasmonic metasurfaces for efficient phase control in reflection.

We numerically study the optical properties of metal-insulator-metal resonators and metasurfaces, emphasizing the presence of gap-surface plasmon (GSP) resonances and their connection to the optical response. In relation to birefringent metal-backed metasurfaces, we show how a combination of metal nanobrick and nanocross elements allows one to fully control the phase of reflected light for two orthogonal polarizations simultaneously. The approach is exemplified by the design of a gradient birefringent metasurface that reflects two orthogonal polarization states into +2 and -3 diffraction order, respectively, with a reflectivity up to ~ 80% and in a broad wavelength range around the design wavelength of 800 nm. Finally, we introduce the concept of metascatterers, which are wavelength-sized polarization-sensitive scatterers.

[1]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[2]  D. Pozar,et al.  Design of millimeter wave microstrip reflectarrays , 1997 .

[3]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[4]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[5]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[6]  Jandir M. Hickmann,et al.  Photonic crystal based polarization control devices , 2004 .

[7]  Bozzi,et al.  A figure of merit for losses in printed reflectarray elements , 2004, IEEE Antennas and Wireless Propagation Letters.

[8]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[9]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[10]  Olivier J F Martin,et al.  Tunable composite nanoparticle for plasmonics. , 2006, Optics letters.

[11]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[12]  H. Miyazaki,et al.  Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. , 2006, Physical review letters.

[13]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[14]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[15]  Thomas Søndergaard,et al.  General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators. , 2007, Optics express.

[16]  Mikael Käll,et al.  Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators. , 2007, Small.

[17]  Wenshan Cai,et al.  A negative permeability material at red light. , 2007, Optics express.

[18]  Wenshan Cai,et al.  Metamagnetics with rainbow colors. , 2007, Optics express.

[19]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of gold nano-strip gap plasmon resonators , 2008 .

[20]  S. Bozhevolnyi,et al.  Strip and gap plasmon polariton optical resonators , 2008 .

[21]  S. Bozhevolnyi,et al.  Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons , 2009 .

[22]  Xueqin Huang,et al.  Optical metamaterial for polarization control , 2009 .

[23]  Ann Roberts,et al.  Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing. , 2010, Nano letters.

[24]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[25]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[26]  N. Engheta,et al.  Homogenization of plasmonic metasurfaces modeled as transmission-line loads , 2011 .

[27]  Andrea Alù,et al.  Manipulating light polarization with ultrathin plasmonic metasurfaces , 2011 .

[28]  Morten Willatzen,et al.  Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles. , 2011, Optics letters.

[29]  D. Gramotnev,et al.  Continuous layer gap plasmon resonators. , 2011, Optics express.

[30]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[31]  Effective constitutive parameters of plasmonic metamaterials: homogenization by dual field interpolation. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[33]  Andrea Alù,et al.  Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface , 2011 .

[34]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[35]  Sergey I. Bozhevolnyi,et al.  Gap-plasmon nanoantennas and bowtie resonators , 2012 .

[36]  Shulin Sun,et al.  Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. , 2012, Nature materials.

[37]  Xin Li,et al.  Flat metasurfaces to focus electromagnetic waves in reflection geometry. , 2012, Optics letters.

[38]  David R. Smith,et al.  Reconciliation of generalized refraction with diffraction theory. , 2012, Optics letters.

[39]  Ole Albrektsen,et al.  Efficient absorption of visible radiation by gap plasmon resonators. , 2012, Optics express.

[40]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[41]  R F Oulton,et al.  Active nanoplasmonic metamaterials. , 2012, Nature materials.

[42]  A. Roberts,et al.  Plasmonic quarter-wave plate. , 2012, Optics letters.

[43]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[44]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[45]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[46]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[47]  N. Yu,et al.  A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. , 2012, Nano letters.

[48]  V. Yannopapas,et al.  Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion , 2012 .

[49]  Anders Pors,et al.  Efficient and broadband quarter-wave plates by gap-plasmon resonators. , 2013, Optics express.

[50]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[51]  Qiaofeng Tan,et al.  Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity , 2013, Light: Science & Applications.

[52]  H. Mosallaei,et al.  Birefringent reflectarray metasurface for beam engineering in infrared. , 2013, Optics letters.

[53]  F. Capasso,et al.  Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons , 2013, Science.

[54]  Qiaofeng Tan,et al.  Reversible Three-Dimensional Focusing of Visible Light with Ultrathin Plasmonic Flat Lens , 2013 .

[55]  Anders Pors,et al.  Broadband plasmonic half-wave plates in reflection. , 2013, Optics letters.

[56]  Edward T. Yu,et al.  Wide-angle wavelength-selective multilayer optical metasurfaces robust to interlayer misalignment , 2013 .

[57]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[58]  Lei Zhou,et al.  A theoretical study on the conversion efficiencies of gradient meta-surfaces , 2013 .

[59]  Sergey I. Bozhevolnyi,et al.  Gap plasmon-based metasurfaces for total control of reflected light , 2013, Scientific Reports.