Surface-enhanced spectroscopy: Toward practical analysis probe

ABSTRACT Surface-enhanced spectroscopy (SES) is a consequence of extreme electromagnetic fields and chemical interactions near a surface. SES is highly sensitive and selective and has been exploited in chemistry, physics, biology, and medicine. It is a rapidly developing technique and is expected to become an important analysis tool. This review introduces theories and concepts of SES techniques including surface-enhanced (SE) Raman scattering, SE infrared absorption, SE chiroptical spectroscopy, and SE fluorescence. Then recent research and applications are discussed to indicate current challenges and future directions.

[1]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[2]  D. B. Pedersen,et al.  Surface Plasmon Resonance Spectra of 2.8 ± 0.5 nm Diameter Copper Nanoparticles in Both Near and Far Fields , 2007 .

[3]  Yuri S. Kivshar,et al.  Probing magnetic and electric optical responses of silicon nanoparticles , 2015 .

[4]  Dhabih V. Chulhai,et al.  Determining Molecular Orientation With Surface-Enhanced Raman Scattering Using Inhomogenous Electric Fields , 2013 .

[5]  C. D. Geddes,et al.  Metal-Enhanced S(2) Fluorescence from Azulene. , 2006, Chemical physics letters.

[6]  B. Cui,et al.  Bowtie Nanoantenna with Single-Digit Nanometer Gap for Surface-Enhanced Raman Scattering (SERS) , 2015, Plasmonics.

[7]  Hervé Rigneault,et al.  Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. , 2011, Nano letters.

[8]  A. Barth Infrared spectroscopy of proteins. , 2007, Biochimica et biophysica acta.

[9]  Christy L. Haynes,et al.  Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection , 2005 .

[10]  J. Lakowicz,et al.  Fluorescence spectral properties of cyanine dye-labeled DNA oligomers on surfaces coated with silver particles. , 2003, Analytical biochemistry.

[11]  G. Schatz,et al.  Raman spectroscopy: The effect of field gradient on SERS , 2013 .

[12]  R. Williams,et al.  Electric field enhancement between two Si microdisks. , 2007, Optics express.

[13]  S. Kawata,et al.  Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. , 2011, Nano letters.

[14]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.

[15]  S. Xiao,et al.  Surface-enhanced Raman spectroscopy: nonlocal limitations. , 2012, Optics letters.

[16]  Eric Huang,et al.  Experimental Demonstration of Localized Plasmonic Structured Illumination Microscopy. , 2017, ACS nano.

[17]  Joseph R. Lakowicz,et al.  Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in Vivo Imaging. , 2003, The journal of physical chemistry. A.

[18]  Hatice Altug,et al.  Infrared Plasmonic Biosensor for Real-Time and Label-Free Monitoring of Lipid Membranes. , 2016, Nano letters.

[19]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[20]  Lasse Jensen,et al.  Vibronic coupling simulations for linear and nonlinear optical processes: simulation results. , 2012, The Journal of chemical physics.

[21]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[22]  Shengli Zou,et al.  Failure and Reexamination of the Raman Scattering Enhancement Factor Predicted by the Enhanced Local Electric Field in a Silver Nanorod , 2015 .

[23]  Gordon S. Kino,et al.  Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles , 2005 .

[24]  Benjamin G. Janesko,et al.  Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects. , 2006, The Journal of chemical physics.

[25]  B. Yu,et al.  Experimental and theoretical investigations on the negative influence of an applied magnetic field on SERS of Ag nanoparticles. , 2011, Chemical communications.

[26]  Laurence D. Barron,et al.  Rayleigh and Raman optical activity from chiral surfaces , 1994 .

[27]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[28]  Dhabih V. Chulhai,et al.  Simulating Ensemble-Averaged Surface-Enhanced Raman Scattering , 2016 .

[29]  Z. Tian,et al.  In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites. , 2017, Nanoscale.

[30]  M. J. Weaver,et al.  Test of surface selection rules for surface-enhanced Raman scattering: the orientation of adsorbed benzene and monosubstituted benzenes on gold , 1990 .

[31]  George C. Schatz,et al.  Reversing the size-dependence of surface plasmon resonances , 2010, Proceedings of the National Academy of Sciences.

[32]  J. Aizpurua,et al.  Dielectric antennas--a suitable platform for controlling magnetic dipolar emission. , 2012, Optics express.

[33]  Pablo G. Etchegoin,et al.  Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy☆ , 2006 .

[34]  Hajime Ishihara,et al.  Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube , 2013, Nature Photonics.

[35]  Tuan Vo-Dinh,et al.  Plasmonic nanoprobes for SERS biosensing and bioimaging , 2009, Journal of biophotonics.

[36]  Jiří Homola,et al.  Surface plasmon-coupled emission on plasmonic Bragg gratings. , 2012, Optics express.

[37]  Liuyang Sun,et al.  Chirality detection of enantiomers using twisted optical metamaterials , 2017, Nature Communications.

[38]  Yiqiao Tang,et al.  Enhanced Enantioselectivity in Excitation of Chiral Molecules by Superchiral Light , 2011, Science.

[39]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[40]  Shaoqin Liu,et al.  Enantioselective circular dichroism sensing of cysteine and glutathione with gold nanorods. , 2015, Analytical chemistry.

[41]  C. D. Geddes,et al.  Metal-enhanced fluorescence. , 2013, Physical chemistry chemical physics : PCCP.

[42]  J. F. Arenas,et al.  Modelling the effect of the electrode potential on the metal-adsorbate surface states: relevant states in the charge transfer mechanism of SERS. , 2011, Chemical communications.

[43]  S. K. Lee,et al.  Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate. , 2015, Optics express.

[44]  A. Pucci,et al.  Infrared reflection-absorption spectra of C2H4 and C2H6 on Cu: effect of surface roughness. , 2006, The journal of physical chemistry. B.

[45]  H. Rigneault,et al.  All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. , 2016, Nano letters (Print).

[46]  Ignacy Gryczynski,et al.  Metal-enhanced emission from indocyanine green: a new approach to in vivo imaging. , 2003, Journal of biomedical optics.

[47]  Z. Kim,et al.  Metal-Catalyzed Chemical Reaction of Single Molecules Directly Probed by Vibrational Spectroscopy. , 2016, Journal of the American Chemical Society.

[48]  L. Jensen,et al.  A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. , 2014, Accounts of chemical research.

[49]  C. L. Jahncke,et al.  The electric field at the apex of a near‐field probe: implications for nano‐Raman spectroscopy , 2003 .

[50]  B. Mizaikoff,et al.  Surface-Enhanced Vibrational Spectroscopy: A New Tool in Chemical IR Sensing? , 1997 .

[51]  L. Lagae,et al.  Fluorescence near gold nanoparticles for DNA sensing. , 2011, Analytical chemistry.

[52]  N. Jana,et al.  Functionalized Plasmonic-Fluorescent Nanoparticles for Imaging and Detection , 2009 .

[53]  Hongxing Xu,et al.  Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers , 2013 .

[54]  J. Dionne,et al.  Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas , 2012, 1209.0288.

[55]  A. Polubotko Manifestation of strong quadrupole light–molecule interaction in the SER and SEHR spectra of pyrazine and phenazine , 2011, 1110.1624.

[56]  G. Schatz,et al.  Surface-enhanced raman scattering of pyrazine at the junction between two Ag20 nanoclusters. , 2006, Nano letters.

[57]  N. Engheta,et al.  Helical Plasmonic Nanostructures as Prototypical Chiral Near-Field Sources , 2014 .

[58]  A. Polman,et al.  Designing dielectric resonators on substrates: combining magnetic and electric resonances. , 2013, Optics express.

[59]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[60]  Ping Xu,et al.  Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS , 2016 .

[61]  Zhong-Qun Tian,et al.  When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. , 2010, Journal of the American Chemical Society.

[62]  J. Liao,et al.  Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. , 2014, Biosensors & bioelectronics.

[63]  Q. Gong,et al.  Surface enhanced fluorescence by metallic nano-apertures associated with stair-gratings. , 2016, Optics express.

[64]  Koray Aydin,et al.  Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. , 2011, ACS nano.

[65]  General modal properties of optical resonances in subwavelength nonspherical dielectric structures. , 2013, Nano letters.

[66]  A A Friesem,et al.  Enhanced two-photon fluorescence excitation by resonant waveguide structures , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[67]  Lukas Novotny,et al.  Demonstration of zero optical backscattering from single nanoparticles. , 2012, Nano letters.

[68]  A. Friesem,et al.  Resonant grating waveguide structures , 1997 .

[69]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[70]  H. Misawa,et al.  Photochemical reaction fields with strong coupling between a photon and a molecule , 2011 .

[71]  Lukas Novotny,et al.  High-resolution near-field Raman microscopy of single-walled carbon nanotubes. , 2003, Physical review letters.

[72]  Anika Kinkhabwala,et al.  Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. , 2006, The Journal of chemical physics.

[73]  Marine Laroche,et al.  Extraordinary optical reflection from sub-wavelength cylinder arrays. , 2006, Optics express.

[74]  H. Klauk,et al.  Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging. , 2017, ACS sensors.

[75]  J. Aizpurua,et al.  Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers , 2013 .

[76]  R. V. Van Duyne,et al.  Toward a glucose biosensor based on surface-enhanced Raman scattering. , 2003, Journal of the American Chemical Society.

[77]  Hsin-Yu Wu,et al.  Metal-Enhanced Fluorescence of Silver Island Associated with Silver Nanoparticle , 2016, Nanoscale Research Letters.

[78]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[79]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[80]  M. Molas,et al.  Raman scattering excitation spectroscopy of monolayer WS2 , 2017, Scientific Reports.

[81]  Shikuan Yang,et al.  Ultrasensitive surface-enhanced Raman scattering detection in common fluids , 2015, Proceedings of the National Academy of Sciences.

[82]  Rémi Carminati,et al.  Optical resonances in one-dimensional dielectric nanorod arrays: field-induced fluorescence enhancement. , 2007, Optics letters.

[83]  S. Retterer,et al.  Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. , 2010, Nano letters.

[84]  P. Bouř Matrix formulation of the surface-enhanced Raman optical activity theory. , 2007, The Journal of chemical physics.

[85]  Zygmunt Gryczynski,et al.  Radiative decay engineering: the role of photonic mode density in biotechnology. , 2003, Journal of physics D: Applied physics.

[86]  Xiang Zhang,et al.  Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity. , 2010, Optics express.

[87]  Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models. , 2014, The journal of physical chemistry. A.

[88]  G. Schatz,et al.  Nonlocal optical response of metal nanostructures with arbitrary shape. , 2009, Physical review letters.

[89]  Xiaoqin Yan,et al.  Surface-enhanced fluorescence from silver fractallike nanostructures decorated with silver nanoparticles. , 2011, Applied optics.

[90]  Naomi J Halas,et al.  Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. , 2009, ACS nano.

[91]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[92]  Sarah M. Stranahan,et al.  Super-resolution optical imaging of single-molecule SERS hot spots. , 2010, Nano letters.

[93]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[94]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[95]  Jian Zhang,et al.  Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. , 2005, The journal of physical chemistry. B.

[96]  Satoshi Kawata,et al.  3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways. , 2014, Methods.

[97]  P. Chu,et al.  High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays. , 2010, ACS applied materials & interfaces.

[98]  George C Schatz,et al.  Electronic structure methods for studying surface-enhanced Raman scattering. , 2008, Chemical Society reviews.

[99]  Sergei G. Kazarian,et al.  Micro- and Macro-Attenuated Total Reflection Fourier Transform Infrared Spectroscopic Imaging , 2010 .

[100]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[101]  Jeremy J. Baumberg,et al.  Nanooptics of Molecular-Shunted Plasmonic Nanojunctions , 2014, Nano letters.

[102]  V. Rotello,et al.  "Superchiral" Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures. , 2015, Journal of the American Chemical Society.

[103]  S. Kazarian,et al.  Chemical Imaging of Live Cancer Cells in the Natural Aqueous Environment , 2009, Applied spectroscopy.

[104]  Zhenyu Zhang,et al.  Landau damping of quantum plasmons in metal nanostructures , 2013 .

[105]  J. Lakowicz,et al.  Fluorescent Metal Nanoshells: Lifetime-Tunable Molecular Probes in Fluorescent Cell Imaging. , 2011, The journal of physical chemistry. C, Nanomaterials and interfaces.

[106]  George C Schatz,et al.  TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. , 2006, The journal of physical chemistry. A.

[107]  J. Lakowicz,et al.  Single-cell fluorescence imaging using metal plasmon-coupled probe 2: single-molecule counting on lifetime image. , 2008, Nano letters.

[108]  SERS-based Immunoassay in a Microfluidic System for the Multiplexed Recognition of Interleukins from Blood Plasma: Towards Picogram Detection , 2017, Scientific Reports.

[109]  M. El-Sayed Plasmonic photochemistry and photon confinement to the nanoscale , 2011 .

[110]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[111]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[112]  H. Siesler,et al.  Near-infrared spectroscopy:principles,instruments,applications , 2002 .

[113]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[114]  J. Pendry,et al.  Collective Theory for Surface Enhanced Raman Scattering. , 1996, Physical review letters.

[115]  Katsumasa Fujita,et al.  Molecular imaging of live cells by Raman microscopy. , 2013, Current opinion in chemical biology.

[116]  M. Pileni,et al.  Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. , 2006, The journal of physical chemistry. B.

[117]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[118]  T. Ebbesen,et al.  Single molecule fluorescence in rectangular nano-apertures. , 2005, Optics express.

[119]  Vince R. Boveia,et al.  Near-Infrared Fluorescence Enhancement Using Silver Island Films , 2006 .

[120]  Tsuyoshi Akiyama,et al.  Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: wavelength dependence of quenching and enhancement effects. , 2013, ACS nano.

[121]  E. Fort,et al.  Surface enhanced fluorescence , 2008 .

[122]  Y. Ekinci,et al.  Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. , 2012, Journal of the American Chemical Society.

[123]  Mark L Brongersma,et al.  General properties of dielectric optical antennas. , 2009, Optics express.

[124]  Chris D. Geddes,et al.  Metal-Enhanced S2 Fluorescence from Azulene , 2006 .

[125]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[126]  P. Chu,et al.  Surfaced-enhanced cellular fluorescence imaging , 2012 .

[127]  Yiqiao Tang,et al.  Optical chirality and its interaction with matter. , 2010, Physical review letters.

[128]  Harald Giessen,et al.  Spatial extent of plasmonic enhancement of vibrational signals in the infrared. , 2014, ACS nano.

[129]  P. White,et al.  Resonance Raman optical activity and surface enhanced resonance Raman optical activity analysis of cytochrome c. , 2007, The journal of physical chemistry. A.

[130]  Zygmunt Gryczynski,et al.  Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. , 2004, Analytical biochemistry.

[131]  Paul Bassan,et al.  Transmission FT-IR chemical imaging on glass substrates: applications in infrared spectral histopathology. , 2014, Analytical chemistry.

[132]  Xiao Yang,et al.  Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). , 2015, Nano letters.

[133]  Sung Tae Kim,et al.  Tip-Enhanced Raman Scattering Imaging of Two-Dimensional Tungsten Disulfide with Optimized Tip Fabrication Process , 2017, Scientific Reports.

[134]  B. Maliwal,et al.  Fluorescence spectral properties of cyanine dye labeled DNA near metallic silver particles. , 2003, Biopolymers.

[135]  H. Rigneault,et al.  Extraction of light from sources located inside waveguide grating structures. , 1999, Optics Letters.

[136]  Zhong-Qun Tian,et al.  Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures , 2014 .

[137]  Kyung-Sup Kwak,et al.  The Internet of Things for Health Care: A Comprehensive Survey , 2015, IEEE Access.

[138]  Rongyao Wang,et al.  Surface-Enhanced Circular Dichroism of Oriented Chiral Molecules by Plasmonic Nanostructures , 2017 .

[139]  K. Schanze,et al.  Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol , 2013, Scientific Reports.

[140]  Xin Xu,et al.  Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy , 2011, Nature communications.

[141]  Alpan Bek,et al.  Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. , 2008, Nano letters.

[142]  S. Efrima Raman optical activity of molecules adsorbed on metal surfaces: Theory , 1985 .

[143]  T. Ebbesen,et al.  Nanoaperture-enhanced fluorescence : Towards higher detection rates with plasmonic metals , 2008 .

[144]  Martin Moskovits,et al.  Persistent misconceptions regarding SERS. , 2013, Physical chemistry chemical physics : PCCP.

[145]  Naomi J. Halas,et al.  Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates , 2008 .

[146]  N. Mortensen,et al.  How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps , 2017, 1703.00728.

[147]  T. Lian,et al.  Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition , 2015, Science.

[148]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[149]  Javier Aizpurua,et al.  Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. , 2008, ACS nano.

[150]  V. A. Apkarian,et al.  Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse. , 2012, ACS nano.

[151]  Satoshi Kawata,et al.  Raman and SERS microscopy for molecular imaging of live cells , 2013, Nature Protocols.

[152]  C. D. Geddes,et al.  Editorial: Metal-Enhanced Fluorescence , 2002, Journal of Fluorescence.

[153]  Yurui Fang,et al.  A plasmon-driven selective surface catalytic reaction revealed by surface-enhanced Raman scattering in an electrochemical environment , 2015, Scientific Reports.

[154]  Lasse Jensen,et al.  A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption. , 2011, The Journal of chemical physics.

[155]  A. Centrone,et al.  Engineering Near-Field SEIRA Enhancements in Plasmonic Resonators. , 2016, ACS photonics.

[156]  Christopher M. Strohsahl,et al.  Label-free DNA detection on nanostructured Ag surfaces. , 2009, ACS nano.

[157]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[158]  H. Misawa,et al.  Surface plasmon-enhanced photochemical reactions , 2013 .

[159]  K. Willets,et al.  Super-resolution imaging of SERS hot spots. , 2014, Chemical Society reviews.

[160]  M. Moskovits,et al.  Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver , 1984 .

[161]  Lasse Jensen,et al.  Theoretical studies of plasmonics using electronic structure methods. , 2011, Chemical reviews.

[162]  P. Monnier,et al.  Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface. , 2010, Optics express.

[163]  D. Dilella,et al.  Intense quadrupole transitions in the spectra of molecules near metal surfaces , 1982 .

[164]  J. Lakowicz,et al.  Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer. , 2002, Analytical biochemistry.

[165]  Naihao Chiang,et al.  Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy. , 2017, Chemical reviews.

[166]  Jianfang Wang,et al.  Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. , 2011, Nanoscale.

[167]  G. Schatz,et al.  Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra. , 2012, The journal of physical chemistry. A.

[168]  Zachary J Smith,et al.  Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps , 2017, Light: Science & Applications.

[169]  G. Schatz,et al.  Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra. , 2012, The journal of physical chemistry. A.

[170]  Hongjie Dai,et al.  Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. , 2011, Nature communications.

[171]  P. Leung,et al.  Nonlocal electrodynamic effect on the enhancement factor for surface enhanced Raman scattering , 1995 .

[172]  S. Efrima The effect of large electric field gradients on the Raman optical activity of molecules adsorbed on metal surfaces , 1983 .

[173]  Yuji Nishikawa,et al.  Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles , 1993 .

[174]  Hairong Zheng,et al.  Metal-enhanced fluorescence of single shell-isolated alloy metal nanoparticle. , 2016, Applied optics.

[175]  Ignacy Gryczynski,et al.  Enhanced Fluorescence from Fluorophores on Fractal Silver Surfaces. , 2003, The journal of physical chemistry. B.

[176]  Lasse Jensen,et al.  Understanding the molecule-surface chemical coupling in SERS. , 2009, Journal of the American Chemical Society.

[177]  Lasse Jensen,et al.  Vibronic coupling simulations for linear and nonlinear optical processes: theory. , 2012, The Journal of chemical physics.

[178]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[179]  Dana D. Dlott,et al.  Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering , 2008, Science.

[180]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[181]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[182]  Ronen Adato,et al.  In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas , 2013, Nature Communications.

[183]  Xiaoqin Yan,et al.  Surface enhanced fluorescence on three dimensional silver nanostructure substrate , 2012 .

[184]  Hongyuan Chen,et al.  Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes , 2017, Scientific Reports.

[185]  L. Jensen,et al.  A discrete interaction model/quantum mechanical method for simulating nonlinear optical properties of molecules near metal surfaces , 2013 .

[186]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[187]  O. Stéphan,et al.  Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. , 2016, Ultramicroscopy.

[188]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[189]  Samuel S. R. Dasary,et al.  Gold Nanoparticle Based Surface Enhanced Fluorescence For Detection of Organophosphorus Agents. , 2008, Chemical physics letters.

[190]  L. Jensen,et al.  A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy. , 2012, The Journal of chemical physics.

[191]  E. Blanch,et al.  Surface enhanced Raman optical activity (SEROA). , 2008, Chemical Society reviews.

[192]  David L. Kaplan,et al.  Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays , 2009, Proceedings of the National Academy of Sciences.

[193]  K. Tamada,et al.  High-resolution imaging of a cell-attached nanointerface using a gold-nanoparticle two-dimensional sheet , 2017, Scientific Reports.

[194]  S. B. Chaney,et al.  Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. , 2006, The journal of physical chemistry. B.

[195]  Naomi J Halas,et al.  Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. , 2008, Small.

[196]  M. Moskovits Surface selection rules , 1982 .

[197]  Louis E. Brus,et al.  Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules , 2000 .

[198]  B. Liu,et al.  Conjugated Polyelectrolyte–Metal Nanoparticle Platforms for Optically Amplified DNA Detection , 2010, Advanced materials.

[199]  D. Tsai,et al.  Landau Damping and Limit to Field Confinement and Enhancement in Plasmonic Dimers , 2017 .

[200]  Annemarie Pucci,et al.  Angstrom-scale distance dependence of antenna-enhanced vibrational signals. , 2012, ACS nano.

[201]  Lei Gao,et al.  Nonlocal Effects on Surface Enhanced Raman Scattering from Bimetallic Coated Nanoparticles , 2013 .

[202]  Mark L Brongersma,et al.  Plasmonic beaming and active control over fluorescent emission. , 2011, Nature communications.

[203]  Dhabih V. Chulhai,et al.  Theory of Linear and Nonlinear Surface-Enhanced Vibrational Spectroscopies. , 2016, Annual review of physical chemistry.

[204]  L. Jensen,et al.  Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach. , 2014, The Journal of chemical physics.

[205]  S. Kawata,et al.  Tip-enhanced coherent anti-stokes Raman scattering for vibrational nanoimaging. , 2004, Physical review letters.

[206]  H. Eyring,et al.  Optical rotatory dispersion and circular dichroism , 1968 .

[207]  T. Laurence,et al.  Robust SERS enhancement factor statistics using rotational correlation spectroscopy. , 2012, Nano letters.

[208]  W. Moerner,et al.  Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential , 2007 .

[209]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[210]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[211]  Masatoshi Osawa,et al.  Surface-Enhanced Infrared Absorption , 2001 .

[212]  C. L. Jahncke,et al.  Electric field gradient effects in raman spectroscopy. , 2000, Physical review letters.

[213]  Stefan A. Maier,et al.  Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies , 2014 .

[214]  Frederick W. King,et al.  Theory of Raman scattering by molecules adsorbed on electrode surfaces , 1978 .

[215]  Satoshi Kawata,et al.  Structured line illumination Raman microscopy , 2015, Nature Communications.

[216]  M. Olivo,et al.  Vibrational spectroscopy of metal carbonyls for bio-imaging and -sensing. , 2016, The Analyst.

[217]  Jian Zhang,et al.  Highly Efficient Detection of Single Fluorophores in Blood Serum Samples with High Autofluorescence , 2009, Photochemistry and photobiology.

[218]  T. Yen,et al.  Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array. , 2014, Biosensors & bioelectronics.

[219]  K. Mikkelsen,et al.  Polarizability of molecular clusters as calculated by a dipole interaction model , 2002 .

[220]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[221]  Nicolas Bonod,et al.  Promoting Magnetic Dipolar Transition in Trivalent Lanthanide Ions with Lossless Mie Resonances , 2012 .

[222]  K. J. Maynard,et al.  Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation , 1988 .

[223]  D. Dilella,et al.  Surface‐enhanced Raman spectroscopy of benzene and benzene‐d6 adsorbed on silver , 1980 .

[224]  A. Cattoni,et al.  Improving image contrast in fluorescence microscopy with nanostructured substrates. , 2015, Optics express.

[225]  K. S. Shin,et al.  Surface-Enhanced Raman Scattering of 4-Nitrobenzenethiol and 4-Aminobenzenethiol on Silver in Icy Environments at Liquid Nitrogen Temperature , 2014 .

[226]  Chao Zhang,et al.  Nanogapped Au Antennas for Ultrasensitive Surface-Enhanced Infrared Absorption Spectroscopy. , 2017, Nano letters.

[227]  Harald Giessen,et al.  Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures , 2013, Nature Communications.

[228]  J. Popp,et al.  Characterizing cytochrome c states--TERS studies of whole mitochondria. , 2011, Chemical communications.

[229]  G. Schatz,et al.  Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. , 2006, Journal of the American Chemical Society.

[230]  J. Heberle,et al.  Biochemical applications of surface-enhanced infrared absorption spectroscopy , 2007, Analytical and bioanalytical chemistry.

[231]  S. Efrima Raman Optical Activity of Molecules Adsorbed on Metal Surfaces , 1984 .

[232]  P. El-Khoury,et al.  Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering. , 2017, Chemical communications.

[233]  C. Png,et al.  Fluorescence enhancement in visible light: dielectric or noble metal? , 2016, Physical chemistry chemical physics : PCCP.

[234]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[235]  G. Pezzotti,et al.  Raman micro-spectroscopy as a viable tool to monitor and estimate the ionic transport in epithelial cells , 2017, Scientific Reports.

[236]  Hongxing Xu,et al.  Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[237]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[238]  E. Hendry,et al.  Ultrasensitive detection and characterization of biomolecules using superchiral fields. , 2010, Nature nanotechnology.

[239]  C. D. Geddes,et al.  Metal-enhanced fluorescence-based RNA sensing. , 2006, Journal of the American Chemical Society.

[240]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[241]  Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates , 2017, Scientific Reports.

[242]  S. Bell,et al.  Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA). , 2011, Chemical communications.

[243]  G. Schatz,et al.  Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. , 2005, The Journal of chemical physics.

[244]  J. Grunenberg Computational Spectroscopy: Methods, Experiments and Applications , 2010 .