A universal set of qubit quantum channels

We investigate the set of quantum channels acting on a single qubit. We provide an alternative, compact generalization of the Fujiwara–Algoet conditions for complete positivity to non-unital qubit channels, which we then use to characterize the possible geometric forms of the pure output of the channel. We provide universal sets of quantum channels for all unital qubit channels as well as for all extremal (not necessarily unital) qubit channels, in the sense that all qubit channels in these sets can be obtained by concatenation of channels in the corresponding universal set. We also show that our universal sets are essentially minimal.

[1]  Barry C Sanders,et al.  Solovay-Kitaev decomposition strategy for single-qubit channels. , 2013, Physical review letters.

[2]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[3]  D. Poulin,et al.  Information-preserving structures: A general framework for quantum zero-error information , 2010, 1006.1358.

[4]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[5]  Daniel Braun,et al.  Role of interference in quantum cloning , 2008 .

[6]  Djoerd Hiemstra,et al.  Exploring Topic-based Language Models for Effective Web Information Retrieval , 2008 .

[7]  K. B. Whaley,et al.  Multiparticle decoherence-free subspaces in extended systems , 2007, quant-ph/0702244.

[8]  D. Braun,et al.  Distribution of interference in random quantum algorithms , 2006, quant-ph/0612168.

[9]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[10]  Jon Kleinberg,et al.  Proceedings of the thirty-eighth annual ACM symposium on Theory of computing , 2006, STOC 2006.

[11]  D. Braun,et al.  Quantitative measure of interference , 2005, quant-ph/0510159.

[12]  K. Życzkowski,et al.  On Duality between Quantum Maps and Quantum States , 2004, Open Syst. Inf. Dyn..

[13]  H. T. Williams,et al.  Unital quantum operations on the Bloch ball and Bloch region (7 pages) , 2003, quant-ph/0308089.

[14]  S. Szarek,et al.  An analysis of completely positive trace-preserving maps on M2 , 2002 .

[15]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[16]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  K. K. Nambiar,et al.  Foundations of Computer Science , 2001, Lecture Notes in Computer Science.

[18]  Knight,et al.  Quantum computing using dissipation to remain in a decoherence-free subspace , 2000, Physical review letters.

[19]  P. Knight,et al.  Driving atoms into decoherence-free states , 1999, QELS 2000.

[20]  M. Ruskai,et al.  Minimal entropy of states emerging from noisy quantum channels , 1999, IEEE Trans. Inf. Theory.

[21]  P. Algoet,et al.  ONE-TO-ONE PARAMETRIZATION OF QUANTUM CHANNELS , 1999 .

[22]  F. Haake,et al.  Slow Decoherence of Superpositions of Macroscopically Distinct States , 1999, quant-ph/9903041.

[23]  S. Huelga,et al.  Cavity-loss-induced generation of entangled atoms , 1998, quant-ph/9811003.

[24]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[25]  G. Guo,et al.  PREVENTION OF DISSIPATION WITH TWO PARTICLES , 1997, quant-ph/9712005.

[26]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[27]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[28]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[29]  Gottesman,et al.  Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  D. Deutsch,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[32]  A. Barenco A universal two-bit gate for quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[33]  Sleator,et al.  Realizable Universal Quantum Logic Gates. , 1995, Physical review letters.

[34]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[35]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[36]  DiVincenzo,et al.  Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[37]  L. J. Landau,et al.  On Birkhoff's theorem for doubly stochastic completely positive maps of matrix algebras , 1993 .

[38]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[40]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[41]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[42]  A. Kossakowski,et al.  On quantum statistical mechanics of non-Hamiltonian systems , 1972 .

[43]  Philippe Blanchard,et al.  Decoherence: Theoretical, Experimental, and Conceptual Problems , 2000 .

[44]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[45]  R. Fitzpatrick,et al.  Euclid's Elements of Geometry , 1901, Nature.