Arthur and Merlin as Oracles

AbstractWe study some problems solvable in deterministic polynomial time given oracle access to the (promise version of) Arthur–Merlin class. Our main results are the following: $$\circ\quad{\rm BPP}^{{\rm NP}}_{||} \subseteq {{\rm P}^{{{\rm pr}{\rm AM}}}_{||}}.$$$$\circ\quad{{\rm S}_2^p} \subseteq {{\rm P}^{{{\rm pr}{\rm AM}}}}.$$In addition to providing new upper bounds for the classes $${{{\rm S}_2^p}}$$ and $${{\rm BPP}^{{\rm NP}}_{||}}$$ , these results are interesting from a derandomization perspective. In conjunction with the hitting set generator construction of Miltersen and Vinodchandran (Computational Complexity 14(3), 2005), we get that $${{{\rm S}_2^p} = {{\rm P}^{\rm NP}}}$$ and $${{\rm BPP}^{{\rm NP}}_{||} = {\rm P}^{{\rm NP}}_{||}}$$ , under the hardness hypothesis associated with derandomizing the class AM. This gives an alternative proof of the same result obtained by Shaltiel and Umans (Computational Complexity 15(4), 2007).We also show that if NP has polynomial size circuits, then the polynomial time hierarchy (PH) collapses as PH =  PprMA. Under the same hypothesis, we also derive a FPprMA algorithm for learning circuits for SAT; this improves the ZPPNP algorithm for the same problem by Bshouty et al. (JCSS 52(3), 1996).Finally, we design a FPprAM algorithm for the problem of finding near-optimal strategies for succinctly presented zero-sum games. For the same problem, Fortnow et al. (Computational Complexity 17(3), 2008a) described a ZPPNP algorithm. One advantage of our FPprAM algorithm is that it can be derandomized using the construction of Miltersen and Vinodchandran yielding a FPNP algorithm, under a hardness hypothesis used for derandomizing AM.

[1]  Joan Feigenbaum,et al.  A game-theoretic classification of interactive complexity classes , 1995, Proceedings of Structure in Complexity Theory. Tenth Annual IEEE Conference.

[2]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[3]  Ran Canetti More on BPP and the Polynomial-Time Hierarchy , 1996, Inf. Process. Lett..

[4]  Ilan Newman,et al.  Private vs. Common Random Bits in Communication Complexity , 1991, Inf. Process. Lett..

[5]  Noam Nisan,et al.  Hardness vs. randomness , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[6]  Vikraman Arvind,et al.  If NP has Polynomial-Size Circuits, then MA=AM , 1995, Theor. Comput. Sci..

[7]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[8]  D. Du,et al.  Theory of Computational Complexity: Du/Theory , 2000 .

[9]  Oded Goldreich,et al.  Another proof that BPP subseteq PH (and more) , 1997, Electron. Colloquium Comput. Complex..

[10]  I. Althöfer On sparse approximations to randomized strategies and convex combinations , 1994 .

[11]  Peter Bro Miltersen,et al.  Derandomizing Arthur-Merlin Games using Hitting Sets , 1999 .

[12]  Lance Fortnow,et al.  Proving SAT does not have small circuits with an application to the two queries problem , 2008, J. Comput. Syst. Sci..

[13]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[14]  Christopher Umans,et al.  Pseudorandomness for Approximate Counting and Sampling , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[15]  Avi Wigderson,et al.  Improved Derandomization of BPP Using a Hitting Set Generator , 1999, RANDOM-APPROX.

[16]  László Babai,et al.  Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes , 1988, J. Comput. Syst. Sci..

[17]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[18]  R. Impagliazzo,et al.  Subexponential Circuits : Derandomizing the XOR Lemma , 2003 .

[19]  Osamu Watanabe,et al.  New Collapse Consequences of NP Having Small Circuits , 1995, ICALP.

[20]  Alexander Russell,et al.  Symmetric alternation captures BPP , 1998, computational complexity.

[21]  Sampath Kannan,et al.  Oracles and Queries That Are Sufficient for Exact Learning , 1996, J. Comput. Syst. Sci..

[22]  Vikraman Arvind,et al.  On pseudorandomness and resource-bounded measure , 2001, Theor. Comput. Sci..

[23]  Jin-Yi Cai,et al.  S2p⊆ZPPNP , 2007 .

[24]  Dieter van Melkebeek,et al.  Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses , 2002, SIAM J. Comput..

[25]  Oded Goldreich,et al.  Another proof that bpp?ph (and more) , 1997 .

[26]  Lance Fortnow,et al.  On the Complexity of Succinct Zero-Sum Games , 2005, Computational Complexity Conference.

[27]  Larry J. Stockmeyer,et al.  The complexity of approximate counting , 1983, STOC.

[28]  Richard J. Lipton,et al.  Simple strategies for large zero-sum games with applications to complexity theory , 1994, STOC '94.

[29]  Sambuddha Roy,et al.  Finding Irrefutable Certificates for S2p via Arthur and Merlin , 2008, STACS.

[30]  Sambuddha Roy,et al.  Oblivious Symmetric Alternation , 2006, STACS.