A 65 nm 0.5 V DPS CMOS Image Sensor With 17 pJ/Frame.Pixel and 42 dB Dynamic Range for Ultra-Low-Power SoCs

Adding vision capabilities to wireless sensors nodes (WSN) for the Internet-of-Things requires imagers working at ultra-low power (ULP) in nanometer CMOS systems-on-chip (SoCs). Such performance can be obtained with time-based digital pixel sensors (DPS) working at ultra-low voltage (ULV), at the expense of lower dynamic range, higher fixed-pattern noise (FPN) and thus poorer image quality. To address this problem, three key techniques were developed in this work for DPS pixels: wide-range adaptive body biasing, low-gating of the 2-transistor in-pixel comparator and digital readout performing delta-reset sampling with low switching activity and robust timing closure. These concepts were demonstrated by designing and fabricating a 128 × 128 CMOS image sensor array in a 65 nm low-power CMOS logic process. Operating at 0.5 V, it features an FPN of 0.66%, a dynamic range of 42 dB and a fill factor of 57% with a 4 μm pixel pitch, while consuming only 17 pJ/(frame.pixel) and 8.8 μW at 32 fps. These performances combined with the small silicon area of 0.69 mm2 makes the imager perfectly suitable for integration in ULP SoCs, targeting WSN applications.

[1]  Jaehyuk Choi,et al.  A 1.36μW adaptive CMOS image sensor with reconfigurable modes of operation from available energy/illumination for distributed wireless sensor network , 2012, 2012 IEEE International Solid-State Circuits Conference.

[2]  Chih-Cheng Hsieh,et al.  A 0.5V 4.95μW 11.8fps PWM CMOS imager with 82dB dynamic range and 0.055% fixed-pattern noise , 2012, 2012 IEEE International Solid-State Circuits Conference.

[3]  A. Bermak,et al.  A digital pixel sensor array with programmable dynamic range , 2005, IEEE Transactions on Electron Devices.

[4]  David Bol,et al.  SleepWalker: A 25-MHz 0.4-V Sub- $\hbox{mm}^{2}$ 7- $\mu\hbox{W/MHz}$ Microcontroller in 65-nm LP/GP CMOS for Low-Carbon Wireless Sensor Nodes , 2013, IEEE Journal of Solid-State Circuits.

[5]  David Bol Robust and Energy-Efficient Ultra-Low-Voltage Circuit Design under Timing Constraints in 65/45 nm CMOS , 2011 .

[6]  David Bol,et al.  Green SoCs for a sustainable Internet-of-Things , 2013, 2013 IEEE Faible Tension Faible Consommation.

[7]  Xinqiao Liu,et al.  A 10000 frames/s CMOS digital pixel sensor , 2001, IEEE J. Solid State Circuits.

[8]  David Blaauw,et al.  A Modular 1 mm$^{3}$ Die-Stacked Sensing Platform With Low Power I$^{2}$C Inter-Die Communication and Multi-Modal Energy Harvesting , 2013, IEEE Journal of Solid-State Circuits.

[9]  David Blaauw,et al.  A millimeter-scale wireless imaging system with continuous motion detection and energy harvesting , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[10]  David Bol,et al.  A 65nm 1V to 0.5V linear regulator with ultra low quiescent current for mixed-signal ULV SoCs , 2014, 2014 IEEE Faible Tension Faible Consommation.

[11]  Amine Bermak,et al.  An ultra-low power current-mode CMOS image sensor with energy harvesting capability , 2010, 2010 Proceedings of ESSCIRC.

[12]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[13]  David Blaauw,et al.  A 467nW CMOS visual motion sensor with temporal averaging and pixel aggregation , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[14]  David Blaauw,et al.  A 0.5 V Sub-Microwatt CMOS Image Sensor With Pulse-Width Modulation Read-Out , 2010, IEEE Journal of Solid-State Circuits.

[15]  David Bol,et al.  A 65-nm 0.5-V 17-pJ/frame.pixel DPS CMOS image sensor for ultra-low-power SoCs achieving 40-dB dynamic range , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[16]  J. Vaillant An image sensor , 2005 .

[17]  David Bol,et al.  Bellevue: A 50MHz variable-width SIMD 32bit microcontroller at 0.37V for processing-intensive wireless sensor nodes , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[18]  Abbas El Gamal,et al.  Analysis of temporal noise in CMOS photodiode active pixel sensor , 2001, IEEE J. Solid State Circuits.

[19]  Amine Bermak,et al.  A 12 pJ/Pixel Analog-to-Information Converter Based 816 × 640 Pixel CMOS Image Sensor , 2014, IEEE Journal of Solid-State Circuits.

[20]  Jaehyuk Choi,et al.  A 3.4-$\mu$ W Object-Adaptive CMOS Image Sensor With Embedded Feature Extraction Algorithm for Motion-Triggered Object-of-Interest Imaging , 2014, IEEE Journal of Solid-State Circuits.

[21]  D. Sylvester,et al.  IoT design space challenges: Circuits and systems , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[22]  A. El Gamal,et al.  CMOS image sensors , 2005, IEEE Circuits and Devices Magazine.