Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

[1]  T. Kubo,et al.  Determination of fracture strength of δ-zirconium hydrides embedded in zirconium matrix at high temperatures , 2013 .

[2]  T. Kubo,et al.  Measurements of delayed hydride cracking propagation rate in the radial direction of Zircaloy-2 cladding tubes , 2012 .

[3]  G. A. McRae,et al.  The first step for delayed hydride cracking in zirconium alloys , 2010 .

[4]  M. P. Puls,et al.  Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys , 2009 .

[5]  M. Daymond,et al.  Strain evolution of zirconium hydride embedded in a Zircaloy-2 matrix , 2008 .

[6]  K. Ogata,et al.  Research Program to Elucidate Outside-in Failure of High Burnup Fuel Cladding , 2006 .

[7]  A. G. Varias,et al.  Finite element analysis for steady-state hydride-induced fracture in metals by composite model , 2006 .

[8]  Young-Suk Kim Driving force for delayed Hydride cracking of zirconium alloys , 2005 .

[9]  J. Rabier,et al.  Experimental studies of mechanical properties of solid zirconium hydrides , 2005 .

[10]  S. Shimada,et al.  A metallographic and fractographic study of outside-in cracking caused by power ramp tests , 2004 .

[11]  S. Ishimoto,et al.  Dissolution and precipitation behavior of hydrides in Zircaloy-2 and high Fe Zircaloy , 2003 .

[12]  J. Bai,et al.  Hydride embrittlement and irradiation effects on the hoop mechanical properties of pressurized water reactor (PWR) and boiling-water reactor (BWR) ZIRCALOY cladding tubes: Part I. Hydride embrittlement in stress-relieved, annealed, and recrystallized ZIRCALOYs at 20 °C and 300 °C , 2003 .

[13]  M. Kuroda,et al.  Influence of Precipitated Hydride on the Fracture Behavior of Zircaloy Fuel Cladding Tube , 2000 .

[14]  Y. S. Kim,et al.  A Normalization Method for Relationship between Yield Stress and Delayed Hydride Cracking Velocity in Zr-2.5Nb Alloys , 2000 .

[15]  Y. Cheong,et al.  A model of the threshold stress intensity factor, KIH, for delayed hydride cracking of Zr–2.5Nb alloy , 2000 .

[16]  S. Shi,et al.  Hydrogen concentration limit and critical temperatures for delayed hydride cracking in zirconium alloys , 1995 .

[17]  S. Shi,et al.  Dependence of the threshold stress intensity factor on hydrogen concentration during delayed hydride cracking in zirconium alloys , 1995 .

[18]  F. Ellyin,et al.  Effect of hydride precipitation on the elastoplastic stress field near a crack tip , 1994 .

[19]  S. Shi,et al.  Criteria of fracture initiation at hydrides in zirconium alloys II. Shallow notch , 1994 .

[20]  S. Shi,et al.  Criteria for fracture initiation at hydrides in zirconium alloys I. Sharp crack tip , 1994 .

[21]  E. Smith The initiation of delayed hydride cracking at a nominally smooth surface , 1994 .

[22]  D. Harrington,et al.  The determination of the partial molar volume of hydrogen in zirconium in a simple stress gradient using comparative microcalorimetry , 1992 .

[23]  F. H. Huang,et al.  Delayed hydride cracking behavior for ZIRCALOY-2 tubing , 1991 .

[24]  M. Puls Effects of crack tip stress states and hydride-matrix interaction stresses on delayed hydride cracking , 1990 .

[25]  L. A. Simpson,et al.  Mechanisms of hydrogen induced delayed cracking in hydride forming materials , 1977 .

[26]  G. Carpenter The dilatational misfit of zirconium hydrides precipitated in zirconium , 1973 .

[27]  K. Barraclough,et al.  Some observations on the deformation characteristics of bulk polycrystalline zirconium hydrides , 1969 .

[28]  A. Sawatzky The diffusion and solubility of hydrogen in the alpha phase of zircaloy-2 , 1960 .

[29]  W. Albrecht,et al.  Low‐Pressure Solubility and Diffusion of Hydrogen in Zirconium , 1957 .