On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

We study two variants of the well-known orthogonal drawing model: (i) the smooth orthogonal, and (ii) the octilinear. Both models form an extension of the orthogonal, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively).

[1]  Ignaz Rutter,et al.  Orthogonal graph drawing with inflexible edges , 2016, Comput. Geom..

[2]  Walter Didimo,et al.  On the Complexity of HV-rectilinear Planarity Testing , 2014, GD.

[3]  Michael A. Bekos,et al.  Smooth Orthogonal Drawings of Planar Graphs , 2014 .

[4]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[5]  Jean Cardinal,et al.  Arc diagrams, flip distances, and Hamiltonian triangulations , 2015, Comput. Geom..

[6]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[7]  David Eppstein,et al.  Planar Lombardi Drawings for Subcubic Graphs , 2012, GD.

[8]  Michael Kaufmann,et al.  Drawing graphs: methods and models , 2001 .

[9]  Ignaz Rutter,et al.  Orthogonal Graph Drawing with Flexibility Constraints , 2010, Algorithmica.

[10]  Alexander Wolff,et al.  Drawing and Labeling High-Quality Metro Maps by Mixed-Integer Programming , 2011, IEEE Transactions on Visualization and Computer Graphics.

[11]  F. Leighton,et al.  Drawing Planar Graphs Using the Canonical Ordering , 1996 .

[12]  Michael A. Bekos,et al.  On the Total Number of Bends for Planar Octilinear Drawings , 2016, LATIN.

[13]  Michael J. Pelsmajer,et al.  Hanani-Tutte and Monotone Drawings , 2011, WG.

[14]  Michael A. Bekos,et al.  Perfect smooth orthogonal drawings , 2014 .

[15]  Michael Kaufmann,et al.  Drawing High Degree Graphs with Low Bend Numbers , 1995, GD.

[16]  Michael T. Goodrich,et al.  Planar Orthogonal and Polyline Drawing Algorithms , 2013, Handbook of Graph Drawing and Visualization.

[17]  Stefan Felsner,et al.  Drawing HV-Restricted Planar Graphs , 2014, LATIN.

[18]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[19]  Michael A. Bekos,et al.  Planar Octilinear Drawings with One Bend Per Edge , 2015 .

[20]  Ján Manuch,et al.  Complexity of Finding Non-Planar Rectilinear Drawings of Graphs , 2010, GD.

[21]  Walter Didimo,et al.  Computing Orthogonal Drawings with the Minimum Number of Bends , 1997, IEEE Trans. Computers.

[22]  Martin Nöllenburg,et al.  Automated drawing of metro maps , 2005 .

[23]  Goos Kant,et al.  A Better Heuristic for Orthogonal Graph Drawings , 1994, ESA.

[24]  Michael Kaufmann,et al.  On Improving Orthogonal Drawings: The 4M-Algorithm , 1998, GD.

[25]  Stefan Felsner,et al.  Geometric Graphs and Arrangements , 2004 .

[26]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[27]  Marek Chrobak,et al.  A Linear-Time Algorithm for Drawing a Planar Graph on a Grid , 1995, Inf. Process. Lett..

[28]  Emilio Di Giacomo,et al.  The Planar Slope Number of Subcubic Graphs , 2014, LATIN.

[29]  Yanpei Liu,et al.  A Linear Algorithm for 2-bend Embeddings of Planar Graphs in the Two-dimensional Grid , 1998, Discret. Appl. Math..

[30]  Walter Didimo,et al.  Orthogonal and Quasi-upward Drawings with Vertices of Prescribed Size , 1999, GD.

[31]  Stephen G. Walker,et al.  Automatic Metro Map Layout Using Multicriteria Optimization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[32]  Balázs Keszegh,et al.  Drawing Planar Graphs of Bounded Degree with Few Slopes , 2013, SIAM J. Discret. Math..

[33]  Seok-Hee Hong,et al.  Automatic visualisation of metro maps , 2006, J. Vis. Lang. Comput..

[34]  Michael A. Bekos,et al.  Smooth Orthogonal Layouts , 2012, Graph Drawing.

[35]  Frank Harary,et al.  Graph Theory , 2016 .

[36]  Goos Kant Hexagonal Grid Drawings , 1992, WG.

[37]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .