Computing many-body wave functions with guaranteed precision: the first-order Møller-Plesset wave function for the ground state of helium atom.

We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.

[1]  Jacek Rychlewski,et al.  Explicitly correlated wave functions in chemistry and physics : theory and applications , 2003 .

[2]  G. Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree-Fock and density functional theory. , 2004, The Journal of chemical physics.

[3]  Gregory Beylkin,et al.  Multiresolution quantum chemistry: basic theory and initial applications. , 2004, The Journal of chemical physics.

[4]  So Hirata,et al.  Grid-based numerical Hartree-Fock solutions of polyatomic molecules , 2007 .

[5]  Stefan Goedecker,et al.  Efficient solution of Poisson's equation with free boundary conditions. , 2006, The Journal of chemical physics.

[6]  Kari Laasonen,et al.  Ab Initio Molecular Dynamics , 1994, Methods in molecular biology.

[7]  Hideo Sekino,et al.  Basis set limit Hartree-Fock and density functional theory response property evaluation by multiresolution multiwavelet basis. , 2008, The Journal of chemical physics.

[8]  Edward F. Valeev,et al.  Low-order tensor approximations for electronic wave functions: Hartree-Fock method with guaranteed precision. , 2011, The Journal of chemical physics.

[9]  Tomoya Ono,et al.  Real-space electronic-structure calculations with a time-saving double-grid technique , 2004, cond-mat/0412571.

[10]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[11]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[12]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[14]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[15]  D. Kolb,et al.  Atomic MP2 correlation energies fast and accurately calculated by FEM extrapolations , 1999 .

[16]  Jan M. L. Martin,et al.  Explicitly correlated Wn theory: W1-F12 and W2-F12. , 2012, The Journal of chemical physics.

[17]  G. A. Petersson,et al.  A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements , 1988 .

[18]  D. Kolb,et al.  High accuracy Dirac-finite-element (FEM) calculations for H2+ and Th 2179 + , 2001 .

[19]  Christof Hättig,et al.  Explicitly correlated electrons in molecules. , 2012, Chemical reviews.

[20]  Gregory Beylkin,et al.  Multiresolution quantum chemistry in multiwavelet bases: Hartree-Fock exchange. , 2004, The Journal of chemical physics.

[21]  M. H. Kalos,et al.  Monte Carlo Calculations of the Ground State of Three- and Four-Body Nuclei , 1962 .

[22]  Hiroshi Nakatsuji,et al.  Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method. , 2008, Physical chemistry chemical physics : PCCP.

[23]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[24]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[25]  S. Hyodo,et al.  Gaussian finite-element mixed-basis method for electronic structure calculations , 2005 .

[26]  Michael Holst,et al.  Adaptive Finite Element Method for Solving the Exact Kohn-Sham Equation of Density Functional Theory. , 2009, Journal of chemical theory and computation.

[27]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[28]  B. Schwartz,et al.  First principles multielectron mixed quantum/classical simulations in the condensed phase. I. An efficient Fourier-grid method for solving the many-electron problem. , 2010, The Journal of chemical physics.

[29]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[30]  J. R. Flores High precision atomic computations from finite element techniques: Second‐order correlation energies of rare gas atoms , 1993 .

[31]  Reinhold Schneider,et al.  Wavelet approximation of correlated wave functions. I. Basics , 2002 .

[32]  Ville Havu,et al.  All-electron density functional theory and time-dependent density functional theory with high-order finite elements. , 2009, The Journal of chemical physics.

[33]  Edward F. Valeev,et al.  Explicitly correlated R12/F12 methods for electronic structure. , 2012, Chemical reviews.

[34]  R Alizadegan,et al.  A divide and conquer real space finite-element Hartree-Fock method. , 2010, The Journal of chemical physics.

[35]  Bradley K. Alpert,et al.  Adaptive solution of partial di erential equations in multiwavelet bases , 2002 .

[36]  J. R. Flores New benchmarks for the second-order correlation energies of Ne and Ar through the finite element MP2 method† , 2008 .

[37]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[38]  Pekka Pyykkö,et al.  Fully numerical hartree-fock methods for molecules , 1986 .

[39]  Axel D. Becke,et al.  Numerical solution of Schrödinger’s equation in polyatomic molecules , 1990 .

[40]  Juana Vázquez,et al.  HEAT: High accuracy extrapolated ab initio thermochemistry. , 2004, The Journal of chemical physics.

[41]  K. Szalewicz,et al.  Gaussian geminals in explicitly correlated coupled cluster theory including single and double excitations , 1999 .

[42]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[43]  Frederick R. Manby,et al.  R12 methods in explicitly correlated molecular electronic structure theory , 2006 .