Logconcave random graphs

We propose the following model of a random graph on n vertices. Let F be a distribution in R+n(n-1)/2 with a coordinate for every pair ij with 1 ≤ i,j ≤ n. Then GF,p is the distribution on graphs with n vertices obtained by picking a random point X from F and defining a graph on n vertices whose edges are pairs ij for which Xij ≤ p. The standard Erdos-Renyi model is the special case when F is uniform on the 0-1 unit cube. We determine basic properties such as the connectivity threshold for quite general distributions. We also consider cases where the Xij are the edge weights in some random instance of a combinatorial optimization problem. By choosing suitable distributions, we can capture random graphs with interesting properties such as triangle-free random graphs and weighted random graphs with bounded total weight.

[1]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[2]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[3]  Santosh S. Vempala,et al.  The geometry of logconcave functions and sampling algorithms , 2007, Random Struct. Algorithms.

[4]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[5]  D. Spielman,et al.  Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time , 2004 .

[6]  A. Prékopa On logarithmic concave measures and functions , 1973 .

[7]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[8]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[9]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[10]  Béla Bollobás,et al.  Random Graphs , 1985 .

[11]  Alan M. Frieze,et al.  Algorithmic theory of random graphs , 1997, Random Struct. Algorithms.

[12]  Jean Bourgain,et al.  ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES , 1986 .

[13]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[14]  A. Dinghas Über eine Klasse superadditiver Mengenfunktionale von Brunn-Minkowski-Lusternikschem Typus , 1957 .

[15]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[16]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[17]  Michael Krivelevich,et al.  Hamilton cycles in highly connected and expanding graphs , 2006, Comb..

[18]  Keith Ball,et al.  Normed spaces with a weak-Gordon-Lewis property , 1991 .

[19]  Desh Ranjan,et al.  Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.

[20]  Santosh S. Vempala,et al.  Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[21]  B. Bollobás The evolution of random graphs , 1984 .

[22]  A. Prékopa Logarithmic concave measures with applications to stochastic programming , 1971 .

[23]  L. Leindler On a Certain Converse of Hölder’s Inequality , 1972 .

[24]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[25]  Fedor Nazarov,et al.  On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis , 2003 .