Logconcave random graphs
暂无分享,去创建一个
[1] V. Milman,et al. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .
[2] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[3] Santosh S. Vempala,et al. The geometry of logconcave functions and sampling algorithms , 2007, Random Struct. Algorithms.
[4] Svante Janson,et al. Random graphs , 2000, ZOR Methods Model. Oper. Res..
[5] D. Spielman,et al. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time , 2004 .
[6] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[7] Alan M. Frieze,et al. On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..
[8] A. Rbnyi. ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .
[9] P. Erdos,et al. On the evolution of random graphs , 1984 .
[10] Béla Bollobás,et al. Random Graphs , 1985 .
[11] Alan M. Frieze,et al. Algorithmic theory of random graphs , 1997, Random Struct. Algorithms.
[12] Jean Bourgain,et al. ON HIGH DIMENSIONAL MAXIMAL FUNCTIONS ASSOCIATED TO CONVEX BODIES , 1986 .
[13] Richard M. Karp,et al. Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..
[14] A. Dinghas. Über eine Klasse superadditiver Mengenfunktionale von Brunn-Minkowski-Lusternikschem Typus , 1957 .
[15] K. Ball. Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .
[16] N. Biggs. THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .
[17] Michael Krivelevich,et al. Hamilton cycles in highly connected and expanding graphs , 2006, Comb..
[18] Keith Ball,et al. Normed spaces with a weak-Gordon-Lewis property , 1991 .
[19] Desh Ranjan,et al. Balls and bins: A study in negative dependence , 1996, Random Struct. Algorithms.
[20] Santosh S. Vempala,et al. Fast Algorithms for Logconcave Functions: Sampling, Rounding, Integration and Optimization , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[21] B. Bollobás. The evolution of random graphs , 1984 .
[22] A. Prékopa. Logarithmic concave measures with applications to stochastic programming , 1971 .
[23] L. Leindler. On a Certain Converse of Hölder’s Inequality , 1972 .
[24] Miklós Simonovits,et al. Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..
[25] Fedor Nazarov,et al. On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis , 2003 .