Distributed state and unknown input estimation for freeway traffic flow models

The paper presents a joint state and unmeasured input estimation technique for a special class of nonlinear second order macroscopic traffic model. The freeway traffic system is transformed into a quasi and affine approximate Lin- ear Parameter Varying (LPV) form. Observer design technique is formulated using off-line optimization problem subjected to Linear Matrix Inequality (LMI) conditions, considering uncertain scheduling parameters. Furthermore, locally designed state estimators are interconnected to cover multiple freeway sections. The elaborated method is validated using real traffic measurements.

[1]  J. Bokor,et al.  DETECTION FILTER DESIGN FOR LPV SYSTEMS – A GEOMETRIC APPROACH , 2002 .

[2]  Denos C. Gazis,et al.  Application of Kalman Filtering to the Surveillance and Control of Traffic Systems , 1972 .

[3]  Markos Papageorgiou,et al.  Parameter identification for a traffic flow model , 1979, Autom..

[4]  Gérard Bloch,et al.  Bounded state reconstruction error for LPV systems with estimated parameters , 2004 .

[5]  Bart De Schutter,et al.  A comparison of filter configurations for freeway traffic state estimation , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[6]  N. E. Nahi,et al.  Recursive Estimation of Traffic Variables: Section Density and Average Speed , 1973 .

[7]  Geert Wets,et al.  Model Predictive Control for Ramp Metering Combined with Extended Kalman Filter-Based Traffic State Estimation , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[8]  Markos Papageorgiou,et al.  Real-time freeway traffic state estimation based on extended Kalman filter: a general approach , 2005 .

[9]  József Bokor,et al.  Unknown input reconstruction for LPV systems , 2010 .

[10]  Andreas Hegyi,et al.  Freeway traffic estimation within particle filtering framework , 2007, Autom..

[11]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[12]  Bart De Schutter,et al.  Distributed Kalman filtering for cascaded systems , 2008, Eng. Appl. Artif. Intell..

[13]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[14]  Jeff S. Shamma,et al.  Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations , 1993 .

[15]  Markos Papageorgiou,et al.  Modelling and real-time control of traffic flow on the southern part of Boulevard Peripherique in Paris: Part II: Coordinated on-ramp metering , 1990 .

[16]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[17]  C. Scherer,et al.  Linear Matrix Inequalities in Control , 2011 .

[18]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .