Integration of GABAergic Interneurons into Cortical Cell Assemblies: Lessons from Embryos and Adults

[1]  J. Altman Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb , 1969, The Journal of comparative neurology.

[2]  T. Powell,et al.  The synaptology of the granule cells of the olfactory bulb. , 1970, Journal of cell science.

[3]  V. Caviness,et al.  A normally laminated afferent projection to an abnormally laminated cortex: Some olfactory connections in the reeler mouse , 1975, The Journal of comparative neurology.

[4]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[5]  M. Miller,et al.  Cogeneration of retrogradely labeled corticocortical projection and GABA-immunoreactive local circuit neurons in cerebral cortex. , 1985, Brain research.

[6]  A. Fairén,et al.  Times of generation of glutamic acid decarboxylase immunoreactive neurons in mouse somatosensory cortex , 1986, The Journal of comparative neurology.

[7]  Joseph Altman,et al.  Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon , 1987, Progress in Neurobiology.

[8]  E. G. Jones,et al.  Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[10]  Maria B. Luskin,et al.  Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone , 1993, Neuron.

[11]  C. Lois,et al.  Long-distance neuronal migration in the adult mammalian brain. , 1994, Science.

[12]  J. Maruniak,et al.  Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the olfactory bulb of the adult mouse , 1994, Neuroscience.

[13]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[14]  Michael W. Miller Relationship of the time of origin and death of neurons in rat somatosensory cortex: Barrel versus septal cortex and projection versus local circuit neurons , 1995, The Journal of comparative neurology.

[15]  M. T. Shipley,et al.  Evidence that pioneer olfactory axons regulate telencephalon cell cycle kinetics to induce the formation of the olfactory bulb , 1995, Neuron.

[16]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[17]  J. Voyvodic,et al.  Cell Death in Cortical Development: How Much? Why? So What? , 1996, Neuron.

[18]  A. Álvarez-Buylla,et al.  Network of tangential pathways for neuronal migration in adult mammalian brain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Steindler,et al.  Young neurons from the adult subependymal zone proliferate and migrate along an astrocyte, extracellular matrix‐rich pathway , 1996, Glia.

[20]  C. Sotelo,et al.  Subventricular zone‐olfactory bulb migratory pathway in the adult mouse: Cellular composition and specificity as determined by heterochronic and heterotopic transplantation , 1996 .

[21]  Arturo Alvarez-Buylla,et al.  Chain Migration of Neuronal Precursors , 1996, Science.

[22]  Hynek Wichterle,et al.  Direct Evidence for Homotypic, Glia-Independent Neuronal Migration , 1997, Neuron.

[23]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[24]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[25]  A. Lavdas,et al.  The Medial Ganglionic Eminence Gives Rise to a Population of Early Neurons in the Developing Cerebral Cortex , 1999, The Journal of Neuroscience.

[26]  J. García-Verdugo,et al.  Young neurons from medial ganglionic eminence disperse in adult and embryonic brain , 1999, Nature Neuroscience.

[27]  S. Anderson,et al.  Cell Migration from the Ganglionic Eminences Is Required for the Development of Hippocampal GABAergic Interneurons , 2000, Neuron.

[28]  S. Black Neuron to Neuron. , 2000 .

[29]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[30]  S. Anderson,et al.  Origin and Molecular Specification of Striatal Interneurons , 2000, The Journal of Neuroscience.

[31]  S. Juliano,et al.  Disruption of Layers 3 and 4 during Development Results in Altered Thalamocortical Projections in Ferret Somatosensory Cortex , 2001, The Journal of Neuroscience.

[32]  G. Fishell,et al.  In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. , 2001, Development.

[33]  I. Franceschini,et al.  Developmental pattern of expression of the alpha chemokine stromal cell‐derived factor 1 in the rat central nervous system , 2001, The European journal of neuroscience.

[34]  J. Rubenstein,et al.  Sorting of Striatal and Cortical Interneurons Regulated by Semaphorin-Neuropilin Interactions , 2001, Science.

[35]  O. Marín,et al.  A long, remarkable journey: Tangential migration in the telencephalon , 2001, Nature Reviews Neuroscience.

[36]  Jürgen Winkler,et al.  Long‐term survival and cell death of newly generated neurons in the adult rat olfactory bulb , 2002, The European journal of neuroscience.

[37]  Christelle Rochefort,et al.  Enriched Odor Exposure Increases the Number of Newborn Neurons in the Adult Olfactory Bulb and Improves Odor Memory , 2002, The Journal of Neuroscience.

[38]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[39]  Arturo Alvarez-Buylla,et al.  Maturation and Death of Adult-Born Olfactory Bulb Granule Neurons: Role of Olfaction , 2002, The Journal of Neuroscience.

[40]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[41]  K. Loulier,et al.  Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis , 2002, Nature Neuroscience.

[42]  Alan Carleton,et al.  Becoming a new neuron in the adult olfactory bulb , 2003, Nature Neuroscience.

[43]  S. Schulz,et al.  CXCR4 Regulates Interneuron Migration in the Developing Neocortex , 2003, The Journal of Neuroscience.

[44]  Kenneth Campbell,et al.  Identification of Two Distinct Progenitor Populations in the Lateral Ganglionic Eminence: Implications for Striatal and Olfactory Bulb Neurogenesis , 2003, The Journal of Neuroscience.

[45]  J. Loturco,et al.  Electrophysiological Differentiation of New Neurons in the Olfactory Bulb , 2003, The Journal of Neuroscience.

[46]  Seong-Seng Tan,et al.  Layer Specification of Transplanted Interneurons in Developing Mouse Neocortex , 2003, The Journal of Neuroscience.

[47]  A. Bordey,et al.  GABA Release and Uptake Regulate Neuronal Precursor Migration in the Postnatal Subventricular Zone , 2004, The Journal of Neuroscience.

[48]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[49]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[50]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[51]  C. Englund,et al.  Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration , 2004, Neuroscience.

[52]  Y. Ben-Ari,et al.  A Noncanonical Release of GABA and Glutamate Modulates Neuronal Migration , 2005, The Journal of Neuroscience.

[53]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[54]  Gordon M Shepherd,et al.  The olfactory glomerulus: A cortical module with specific functions , 2005, Journal of neurocytology.

[55]  Masahiro Yamaguchi,et al.  Critical period for sensory experience-dependent survival of newly generated granule cells in the adult mouse olfactory bulb. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Olivo-Marin,et al.  Neonatal and Adult Neurogenesis Provide Two Distinct Populations of Newborn Neurons to the Mouse Olfactory Bulb , 2005, The Journal of Neuroscience.

[57]  M. Götz,et al.  Neuronal fate determinants of adult olfactory bulb neurogenesis , 2005, Nature Neuroscience.

[58]  E. Soriano,et al.  The Cells of Cajal-Retzius: Still a Mystery One Century After , 2005, Neuron.

[59]  T. Kosaka,et al.  Structural organization of the glomerulus in the main olfactory bulb. , 2005, Chemical senses.

[60]  M. Rossel,et al.  Stromal cell-derived factor-1 (SDF-1) expression in embryonic mouse cerebral cortex starts in the intermediate zone close to the pallial-subpallial boundary and extends progressively towards the cortical hem. , 2005, Gene expression patterns : GEP.

[61]  T. Hensch Critical period plasticity in local cortical circuits , 2005, Nature Reviews Neuroscience.

[62]  E. Callaway,et al.  Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity , 2005, Nature Neuroscience.

[63]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[64]  K. Mori,et al.  A leucine‐rich repeat membrane protein, 5T4, is expressed by a subtype of granule cells with dendritic arbors in specific strata of the mouse olfactory bulb , 2006, The Journal of comparative neurology.

[65]  J. Favor,et al.  Molecular Interaction between Projection Neuron Precursors and Invading Interneurons via Stromal-Derived Factor 1 (CXCL12)/CXCR4 Signaling in the Cortical Subventricular Zone/Intermediate Zone , 2006, The Journal of Neuroscience.

[66]  M. Calcagnotto,et al.  Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain , 2006, The Journal of Neuroscience.

[67]  Ben W. Strowbridge,et al.  Blanes Cells Mediate Persistent Feedforward Inhibition onto Granule Cells in the Olfactory Bulb , 2006, Neuron.

[68]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[69]  H. Yeh,et al.  Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. , 2006, Cerebral cortex.

[70]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[71]  Pasko Rakic,et al.  A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering. , 2006, Cerebral cortex.

[72]  O. Marín,et al.  Layer Acquisition by Cortical GABAergic Interneurons Is Independent of Reelin Signaling , 2006, The Journal of Neuroscience.

[73]  S. Willaime-Morawek,et al.  Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells , 2006, The Journal of cell biology.

[74]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[75]  M. Álvarez-Dolado,et al.  Dlx-Dependent and -Independent Regulation of Olfactory Bulb Interneuron Differentiation , 2007, The Journal of Neuroscience.

[76]  Wei R. Chen,et al.  The olfactory granule cell: From classical enigma to central role in olfactory processing , 2007, Brain Research Reviews.

[77]  F. Rossi,et al.  Generation of Distinct Types of Periglomerular Olfactory Bulb Interneurons during Development and in Adult Mice: Implication for Intrinsic Properties of the Subventricular Zone Progenitor Population , 2007, The Journal of Neuroscience.

[78]  M. Ekker,et al.  A Subpopulation of Olfactory Bulb GABAergic Interneurons Is Derived from Emx1- and Dlx5/6-Expressing Progenitors , 2007, The Journal of Neuroscience.

[79]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[80]  Arturo Alvarez-Buylla,et al.  Mosaic Organization of Neural Stem Cells in the Adult Brain , 2007, Science.

[81]  Afra H. Wang,et al.  Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus , 2007, Nature Neuroscience.

[82]  Pasko Rakic,et al.  The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering , 2007, Brain Research Reviews.

[83]  N. Kessaris,et al.  Subventricular Zone Stem Cells Are Heterogeneous with Respect to Their Embryonic Origins and Neurogenic Fates in the Adult Olfactory Bulb , 2007, The Journal of Neuroscience.

[84]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[85]  R. Ventura,et al.  Dorsal Radial Glia Generate Olfactory Bulb Interneurons in the Postnatal Murine Brain , 2007, The Journal of Neuroscience.

[86]  A. Sadikot,et al.  Laminar fate of cortical GABAergic interneurons is dependent on both birthdate and phenotype , 2007, The Journal of comparative neurology.

[87]  T. Kosaka,et al.  Heterogeneity of parvalbumin-containing neurons in the mouse main olfactory bulb, with special reference to short-axon cells and βIV-spectrin positive dendritic segments , 2008, Neuroscience Research.

[88]  H. Adesnik,et al.  Regional Distribution of Cortical Interneurons and Development of Inhibitory Tone Are Regulated by Cxcl12/Cxcr4 Signaling , 2008, The Journal of Neuroscience.

[89]  G. Fishell,et al.  The Distinct Temporal Origins of Olfactory Bulb Interneuron Subtypes , 2008, The Journal of Neuroscience.

[90]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[91]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[92]  H. Monyer,et al.  Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone , 2008, Proceedings of the National Academy of Sciences.

[93]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[94]  S. Anderson,et al.  Postmitotic Nkx2-1 Controls the Migration of Telencephalic Interneurons by Direct Repression of Guidance Receptors , 2008, Neuron.

[95]  O. Marín,et al.  Chemokine Signaling Controls Intracortical Migration and Final Distribution of GABAergic Interneurons , 2008, The Journal of Neuroscience.

[96]  Arturo Alvarez-Buylla,et al.  Origin and function of olfactory bulb interneuron diversity , 2008, Trends in Neurosciences.

[97]  S. Firestein,et al.  How the olfactory bulb got its glomeruli: a just so story? , 2009, Nature Reviews Neuroscience.

[98]  O. Marín,et al.  The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons , 2009, The Journal of Neuroscience.

[99]  Gord Fishell,et al.  The Developmental Integration of Cortical Interneurons into a Functional Network , 2022 .

[100]  C. Lois,et al.  A Critical Period for Activity-Dependent Synaptic Development during Olfactory Bulb Adult Neurogenesis , 2009, The Journal of Neuroscience.

[101]  Marco Sassoè-Pognetto,et al.  Early Synapse Formation in Developing Interneurons of the Adult Olfactory Bulb , 2009, The Journal of Neuroscience.

[102]  Edward M. Callaway,et al.  Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons , 2009, The Journal of Neuroscience.

[103]  Dante S. Bortone,et al.  KCC2 Expression Promotes the Termination of Cortical Interneuron Migration in a Voltage-Sensitive Calcium-Dependent Manner , 2009, Neuron.

[104]  K. Campbell,et al.  Distinct Temporal Requirements for the Homeobox Gene Gsx2 in Specifying Striatal and Olfactory Bulb Neuronal Fates , 2009, Neuron.

[105]  Anne Gieseler,et al.  Relationship between GABAergic interneurons migration and early neocortical network activity , 2009, Developmental neurobiology.

[106]  A. Fasolo,et al.  Olfactory Enrichment Influences Adult Neurogenesis Modulating GAD67 and Plasticity-Related Molecules Expression in Newborn Cells of the Olfactory Bulb , 2009, PloS one.

[107]  P. Lledo,et al.  Postnatal Neurogenesis: From Neuroblast Migration to Integration into Mature Circuits , 2009 .

[108]  P. Lledo,et al.  Postnatal neurogenesis: from neuroblast migration to neuronal integration. , 2009, Reviews in the neurosciences.

[109]  C. Bardy,et al.  Adult neurogenesis promotes synaptic plasticity in the olfactory bulb , 2009, Nature Neuroscience.

[110]  O. Marín,et al.  Generation of interneuron diversity in the mouse cerebral cortex , 2010, The European journal of neuroscience.

[111]  Cheng He,et al.  Olfactory ensheathing cells: Attractant of neural progenitor migration to olfactory bulb , 2010, Glia.

[112]  J. Miyazaki,et al.  CXCR4 is required for proper regional and laminar distribution of cortical somatostatin-, calretinin-, and neuropeptide Y-expressing GABAergic interneurons. , 2010, Cerebral cortex.

[113]  T. Haydar,et al.  Heterogeneity in Ventricular Zone Neural Precursors Contributes to Neuronal Fate Diversity in the Postnatal Neocortex , 2010, The Journal of Neuroscience.

[114]  C. Bardy,et al.  How, When, and Where New Inhibitory Neurons Release Neurotransmitters in the Adult Olfactory Bulb , 2010, Journal of Neuroscience.

[115]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[116]  P. Lledo,et al.  NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain , 2011, Neural Development.

[117]  J. Rubenstein,et al.  The Progenitor Zone of the Ventral Medial Ganglionic Eminence Requires Nkx2-1 to Generate Most of the Globus Pallidus But Few Neocortical Interneurons , 2010, The Journal of Neuroscience.

[118]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[119]  V. Broccoli,et al.  Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. , 2010, Genes & development.

[120]  Michael P Stryker,et al.  Cortical Plasticity Induced by Inhibitory Neuron Transplantation , 2010, Science.

[121]  Wolfgang Kelsch,et al.  Genetically Increased Cell-Intrinsic Excitability Enhances Neuronal Integration into Adult Brain Circuits , 2010, Neuron.

[122]  Theofanis Karayannis,et al.  Neuronal activity is required for the development of specific cortical interneuron subtypes , 2011, Nature.

[123]  KouichiC . Nakamura,et al.  Tangential migration and proliferation of intermediate progenitors of GABAergic neurons in the mouse telencephalon , 2011, Development.

[124]  Marta Pallotto,et al.  Dynamic development of the first synapse impinging on adult-born neurons in the olfactory bulb circuit , 2011, Neural systems & circuits.

[125]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[126]  Hitoshi Sakano,et al.  How is the olfactory map formed and interpreted in the mammalian brain? , 2011, Annual review of neuroscience.

[127]  G. Fishell,et al.  Mechanisms of inhibition within the telencephalon: "where the wild things are". , 2011, Annual review of neuroscience.

[128]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[129]  U. Müller,et al.  Extracellular matrix functions during neuronal migration and lamination in the mammalian central nervous system , 2011, Developmental neurobiology.

[130]  G. Miyoshi,et al.  GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. , 2011, Cerebral cortex.

[131]  O. Marín,et al.  Cxcr7 Controls Neuronal Migration by Regulating Chemokine Responsiveness , 2011, Neuron.

[132]  Zhengang Yang,et al.  The Transcription Factor Sp8 Is Required for the Production of Parvalbumin-Expressing Interneurons in the Olfactory Bulb , 2011, The Journal of Neuroscience.

[133]  Konstantin Khodosevich,et al.  “Small Axonless Neurons”: Postnatally Generated Neocortical Interneurons with Delayed Functional Maturation , 2011, The Journal of Neuroscience.

[134]  S. Anderson,et al.  Clonal Production and Organization of Inhibitory Interneurons in the Neocortex , 2011, Science.

[135]  S. Lodato,et al.  Excitatory Projection Neuron Subtypes Control the Distribution of Local Inhibitory Interneurons in the Cerebral Cortex , 2011, Neuron.

[136]  G. Turrigiano Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. , 2011, Annual review of neuroscience.

[137]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[138]  R. Yuste,et al.  Dense, Unspecific Connectivity of Neocortical Parvalbumin-Positive Interneurons: A Canonical Microcircuit for Inhibition? , 2011, The Journal of Neuroscience.

[139]  N. Dehorter,et al.  A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area , 2011, The Journal of Neuroscience.

[140]  K. Mori,et al.  Tbr2 Deficiency in Mitral and Tufted Cells Disrupts Excitatory–Inhibitory Balance of Neural Circuitry in the Mouse Olfactory Bulb , 2012, The Journal of Neuroscience.

[141]  I. Soltesz,et al.  Neurogliaform and Ivy Cells: A Major Family of nNOS Expressing GABAergic Neurons , 2012, Front. Neural Circuits.

[142]  J. Nacher,et al.  Characterization of a population of tyrosine hydroxylase-containing interneurons in the external plexiform layer of the rat olfactory bulb , 2012, Neuroscience.

[143]  J. D. Macklis,et al.  SnapShot: Cortical Development , 2012, Cell.

[144]  Y. Yanagawa,et al.  The Fraction of Cortical GABAergic Neurons Is Constant from Near the Start of Cortical Neurogenesis to Adulthood , 2012, The Journal of Neuroscience.

[145]  Kei M. Igarashi,et al.  Parallel Mitral and Tufted Cell Pathways Route Distinct Odor Information to Different Targets in the Olfactory Cortex , 2012, The Journal of Neuroscience.

[146]  Sarah Ashby,et al.  Diverse populations of intrinsic cholinergic interneurons in the mouse olfactory bulb , 2012, Neuroscience.

[147]  S. Hellwig,et al.  Reelin Together with ApoER2 Regulates Interneuron Migration in the Olfactory Bulb , 2012, PloS one.

[148]  S. Anderson,et al.  Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. , 2012, Cerebral cortex.

[149]  A. Espinosa,et al.  Fate-Restricted Neural Progenitors in the Mammalian Cerebral Cortex , 2012, Science.

[150]  R. Lent,et al.  Temporal and spatial regulation of interneuron distribution in the developing cerebral cortex—an in vitro study , 2012, Neuroscience.

[151]  T. Vitalis,et al.  New pool of cortical interneuron precursors in the early postnatal dorsal white matter. , 2012, Cerebral cortex.

[152]  R. Froemke,et al.  Intrinsically determined cell death of developing cortical interneurons , 2012, Nature.

[153]  A. LaMantia,et al.  Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome , 2012, Proceedings of the National Academy of Sciences.

[154]  Y. Yanagawa,et al.  Intrinsic and Extrinsic Mechanisms Control the Termination of Cortical Interneuron Migration , 2012, The Journal of Neuroscience.

[155]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[156]  H. Taniguchi,et al.  The Spatial and Temporal Origin of Chandelier Cells in Mouse Neocortex , 2013, Science.

[157]  C. McBain,et al.  Neurogliaform cells dynamically regulate somatosensory integration via synapse-specific modulation , 2012, Nature Neuroscience.

[158]  Benjamin R. Arenkiel,et al.  Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb , 2013, Front. Neural Circuits.

[159]  S. Anderson,et al.  Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. , 2013, Cell stem cell.

[160]  J. Rubenstein,et al.  Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. , 2013, Cell stem cell.

[161]  Miguel Maravall,et al.  Lineage-specific laminar organization of cortical GABAergic interneurons , 2013, Nature Neuroscience.

[162]  R. Yuste,et al.  Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. , 2013, Cerebral cortex.

[163]  O. Marín Cellular and molecular mechanisms controlling the migration of neocortical interneurons , 2013, The European journal of neuroscience.

[164]  G. Fishell,et al.  Directed Migration of Cortical Interneurons Depends on the Cell-Autonomous Action of Sip1 , 2013, Neuron.

[165]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.