Improved assessment of mass concrete dams using acoustic travel time tomography. Part I — theory

Abstract This is the first part of an investigation on improved assessment of mass concrete dams using Acoustic Travel Time Tomography (ATTT). It presents the concept and basic science for ATTT. ATTT combines aspects of ultrasonic measurements previously used for material characterization, ultrasonic methods applied to test concrete and features of methods used in shallow seismic surveys. This science/technology is integrated into a system that records travel time data and applies tomography software. The resulting tomographs have the potential to provide cross-sectional images of the structure that can be used to locate cracks, identify regions of structural damage, and other anomalies deep inside a massive concrete structure. Results from initial laboratory and field studies obtained with a system that embodies the approach presented in this paper and which provides proof-of-concept data, are presented in a companion paper (Kepler WF, Bond LJ, Frangopol DM. Improved assessment of mass concrete dams using acoustic travel time tomography. Part II — applications. Constr Build Mater, 2000; vol. 14, No. 3, pp. 147–156).

[1]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[2]  Leonard J. Bond Predictive engineering for aging infrastructure , 1999, Smart Structures.

[3]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[4]  Dan M. Frangopol,et al.  Improved assessment of mass concrete dams using acoustic travel time tomography. Part II — application , 2000 .

[5]  R. B. Thompson,et al.  The use of elastic wave-material structure interaction theories in NDE modeling , 1989 .

[6]  R. H. Elvery,et al.  ULTRASONIC ASSESSMENT OF CONCRETE STRENGTH AT EARLY AGES , 1976 .

[7]  Kaspar Willam,et al.  Ultrasonic Assessment of Damage in Concrete under Cyclic Compression , 1998 .

[8]  S. Baste,et al.  Under load strain partition of a ceramic matrix composite using an ultrasonic method , 1996 .

[9]  René Marklein,et al.  Electromagnetic and elastic wave scattering and inverse scattering applied to concrete , 1997 .

[10]  Paulo J.M. Monteiro,et al.  Computer simulations of limited angle tomography of reinforced concrete , 1991 .

[11]  Larry D. Olson,et al.  Nondestructive evaluation of concrete dams and other structures , 1995, Smart Structures.

[12]  Yih-Hsing Pao,et al.  Diffraction of elastic waves and dynamic stress concentrations , 1973 .

[13]  A. Vary,et al.  Ultrasonic measurement of material properties , 1980 .

[14]  K. Graff Wave Motion in Elastic Solids , 1975 .

[15]  Chia-Chi Cheng,et al.  Determining the minimum crack width that can be detected using the impact-echo method Part 2. Numerical fracture analyses , 1995 .

[16]  P. G. Heasler,et al.  Piping inspection round robin , 1996 .

[17]  Hartmut Spetzler,et al.  Path dependence of acoustic velocity and attenuation in experimentally deformed westerly granite , 1983 .

[18]  René Marklein,et al.  Ultrasonic and Electromagnetic Wave Propagation and Inverse Scattering Applied to Concrete , 1996 .

[19]  Dan M. Frangopol,et al.  Guest Editorial: Structural Reliability in Bridge Engineering , 1998 .

[20]  Guk-Rwang Won American Society for Testing and Materials , 1987 .

[21]  F. Livingstone,et al.  Review of progress in quantitative NDE: Williamsburg, VA, USA, 21–26 June 1987 , 1988 .

[22]  R. H. Jeal Damage tolerance concepts for critical engine components , 1985 .

[23]  Yih-Hsing Pao,et al.  Elastic Waves in Solids , 1983 .

[24]  D B Woodham,et al.  EVALUATING STRUCTURAL DAMAGE AND DETERIORATION USING TOMOGRAPHIC VELOCITY RECONSTRUCTIONS , 1996 .

[25]  Lorenzo Capineri,et al.  Time-of-flight diffraction tomography for NDT applications , 1992 .

[26]  Jan Drewes Achenbach,et al.  Ray Methods For Waves In Elastic Solids , 1981 .

[27]  Daryl R. Tweeton,et al.  3DTOM, Three-Dimensional Geophysical Tomography , 1996 .

[28]  Michael P. Schuller,et al.  Evaluation of Concrete using Acoustic Tomography , 1995 .

[29]  D. Thompson,et al.  Review of Progress in Quantitative Nondestructive Evaluation , 1982 .

[30]  John B. Scalzi,et al.  NSF PROGRAMS IN NONDESTRUCTIVE EVALUATION OF CIVIL INFRASTRUCTURES , 1994 .

[31]  R. Lytle,et al.  Computerized geophysical tomography , 1979, Proceedings of the IEEE.

[32]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[33]  M. Sansalone Flaw detection in concrete using transient stress waves , 1985 .

[34]  Larry D. Olson,et al.  Acoustic Tomography for Qualitative Nondestructive Evaluation (QNDE) of Structural Concrete using a New Ultrasonic Scanner Source , 1995 .

[35]  J. L. Robert,et al.  Study of wave attenuation in concrete , 1993 .

[36]  Shu-yi Zhang,et al.  Mapping an underground rock mass by anisotropic acoustical transmission tomography , 1998 .

[37]  Chia-Chi Cheng,et al.  Determining the minimum crack width that can be detected using the impact-echo method Part 1: Experimental study , 1995 .

[38]  Emmanuel P. Papadakis Ultrasonic attenuation caused by Rayleigh scattering by graphite nodules in nodular cast iron , 1981 .

[39]  Steve Millard,et al.  Detecting Sub-Surface Features in Concrete by Impulse Radar , 1995 .

[40]  G P Roberson,et al.  COMPUTERIZED TOMOGRAPHY ANALYSIS OF REINFORCED CONCRETE , 1993 .