The Frequency of Elliptic Curve Groups over Prime Finite Fields

Abstract Letting $p$ vary over all primes and $E$ vary over all elliptic curves over the finite field ${{\mathbb{F}}_{p}}$ , we study the frequency to which a given group $G$ arises as a group of points $E\left( {{\mathbb{F}}_{p}} \right)$ . It is well known that the only permissible groups are of the form ${{G}_{m,\,k}}\,:=\,\mathbb{Z}\,/m\mathbb{Z}\,\times \,\mathbb{Z}/mk\mathbb{Z}$ . Given such a candidate group, we let $M\left( {{G}_{m,\,k}} \right)$ be the frequency to which the group ${{G}_{m,\,k}}$ arises in this way. Previously, C.David and E. Smith determined an asymptotic formula for $M\left( {{G}_{m,\,k}} \right)$ assuming a conjecture about primes in short arithmetic progressions. In this paper, we prove several unconditional bounds for $M\left( {{G}_{m,\,k}} \right)$ , pointwise and on average. In particular, we show that $M\left( {{G}_{m,\,k}} \right)$ is bounded above by a constant multiple of the expected quantity when $m\,\le \,{{k}^{A}}$ and that the conjectured asymptotic for $M\left( {{G}_{m,\,k}} \right)$ holds for almost all groups ${{G}_{m,\,k}}$ when $m\,\le \,{{k}^{1/4-\in }}$ . We also apply our methods to study the frequency to which a given integer $N$ arises as a group order $\#E\left( {{\mathbb{F}}_{p}} \right)$ .

[1]  C. David,et al.  Group Structures of Elliptic Curves Over Finite Fields , 2012, 1210.3880.

[2]  H. Trotter,et al.  Frobenius Distributions in GL2-Extensions: Distribution of Frobenius Automorphisms in GL2-Extensions of the Rational Numbers , 1976 .

[3]  Igor E. Shparlinski,et al.  On Group Structures Realized by Elliptic Curves over Arbitrary Finite Fields , 2010, Exp. Math..

[4]  Chantal David,et al.  Corrigendum: A Cohen-Lenstra phenomenon for elliptic curves , 2014, J. Lond. Math. Soc..

[5]  N. Koblitz PRIMALITY OF THE NUMBER OF POINTS ON AN ELLIPTIC CURVE OVER A FINITE FIELD , 1988 .

[6]  J. Buchmann,et al.  Binary Quadratic Forms , 2007 .

[7]  Peter Stevenhagen,et al.  Elliptic Curves with a Given Number of Points , 2004, ANTS.

[8]  E. J. Kormondy The Consultants Bureau , 1969 .

[9]  Kevin Ford On Bombieri’s asymptotic sieve , 2004, math/0401215.

[10]  Chantal David,et al.  A Cohen–Lenstra phenomenon for elliptic curves , 2014, J. Lond. Math. Soc..

[11]  H. Trotter,et al.  Frobenius Distributions in GL2-Extensions , 1976 .

[12]  C. David,et al.  Corrigendum: Elliptic curves with a given number of points over finite fields , 2014, Compositio Mathematica.

[13]  S. Stepanov Arithmetic of algebraic curves , 1994 .

[14]  Gabriele Eisenhauer Binary Quadratic Forms An Algorithmic Approach , 2016 .

[15]  Elliptic curves with a given number of points over finite fields , 2011, 1108.3539.

[16]  The Distribution of Values of L(1; ) , 2007 .

[17]  A. Granville,et al.  The distribution of values of L(1, χd) , 2003 .

[18]  Dimitris Koukoulopoulos Primes in short arithmetic progressions , 2014, 1405.6592.

[19]  René Schoof,et al.  Nonsingular plane cubic curves over finite fields , 1987, J. Comb. Theory A.

[20]  M. Deuring Die Typen der Multiplikatorenringe elliptischer Funktionenkörper , 1941 .

[21]  A. Harles Sieve Methods , 2001 .