Submesoscale Processes and Dynamics

Increased spatial resolution in recent observations and modeling has revealed a richness of structure and processes on lateral scales of a kilometer in the upper ocean. Processes at this scale, termed submesoscale, are distinguished by order one Rossby and Richardson numbers; their dynamics are distinct from those of the largely quasi-geostrophic mesoscale, as well as fully three-dimensional, small-scale, processes. Submesoscale pro- cesses make an important contribution to the vertical flux of mass, buoyancy, and trac- ers in the upper ocean. They flux potential vorticity through the mixed layer, enhance communication between the pycnocline and surface, and play a crucial role in changing the upper-ocean stratification and mixed-layer structure on a time scale of days. In this review, we present a synthesis of upper-ocean submesoscale processes, arising in the presence of lateral buoyancy gradients. We describe their generation through fron- togenesis, unforced instabilities, and forced motions due to buoyancy loss or down-front winds. Using the semi-geostrophic (SG) framework, we present physical arguments to help interpret several key aspects of submesoscale flows. These include the development of narrow elongated regions with O(1) Rossby and Richardson numbers through fron- togenesis, intense vertical velocities with a downward bias at these sites, and secondary circulations that redistribute buoyancy to stratify the mixed layer. We review some of the first parameterizations for submesoscale processes that attempt to capture their con- tribution to, firstly, vertical buoyancy fluxes and restratification by mixed layer insta- bilities and, secondly, the exchange of potential vorticity between the wind- and buoyancy- forced surface, mixed layer, and pycnocline. Submesoscale processes are emerging as vi- tal for the transport of biogeochemical properties, for generating spatial heterogeneity that is critical for biogeochemical processes and mixing, and for the transfer of energy from the meso to small scales. Several studies are in progress to model, measure, ana- lyze, understand, and parameterize these motions.

[1]  I. Yavneh,et al.  Baroclinic Instability and Loss of Balance , 2005 .

[2]  P. Niiler On the Ekman divergence in an oceanic jet , 1969 .

[3]  J. McWilliams,et al.  Convective Modifications of a Geostrophic Eddy Field , 2001 .

[4]  P. Gent,et al.  Intermediate Models of Planetary Circulations in the Atmosphere and Ocean , 1980 .

[5]  K. Polzin How Rossby Waves Break. Results from POLYMODE and the End of the Enstrophy Cascade , 2005 .

[6]  Brian J. Hoskins,et al.  The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations. , 1975 .

[7]  A. Viudez The Vorticity-Velocity Gradient Cofactor Tensor and the Material Invariant of the Semigeostrophic Theory. , 2005 .

[8]  J. McWilliams Diagnostic Force Balance and its Limits , 2003 .

[9]  A. Mahadevan Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? , 2006 .

[10]  Craig M. Lee,et al.  Intensification of ocean fronts by down-front winds , 2005 .

[11]  D. Rudnick,et al.  Two‐dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large‐scale deformation , 2005 .

[12]  A. Robinson,et al.  Eddy-induced nutrient supply and new production in the Sargasso Sea , 1997 .

[13]  A. Viudez,et al.  Optimal potential vorticity balance of geophysical flows , 2004, Journal of Fluid Mechanics.

[14]  D. Rudnick Intensive surveys of the Azores Front: 2. Inferring the geostrophic and vertical velocity fields , 1996 .

[15]  C. Snyder,et al.  A New Surface Model for Cyclone–Anticyclone Asymmetry , 2002 .

[16]  E. Kunze,et al.  Submesoscale Dynamics near a Seamount. Part I: Measurements of Ertel Vorticity , 1993 .

[17]  G. Hakim,et al.  Canonical frontal circulation patterns in terms of Green's functions for the Sawyer‐Eliassen equation , 2001 .

[18]  Richard J. Greatbatch,et al.  Exploring the Relationship between Eddy-Induced Transport Velocity, Vertical Momentum Transfer, and the Isopycnal Flux of Potential Vorticity , 1998 .

[19]  P. Stone Baroclinic stability under non-hydrostatic conditions , 1971, Journal of Fluid Mechanics.

[20]  P. Bartello,et al.  The transition from geostrophic to stratified turbulence , 2006, Journal of Fluid Mechanics.

[21]  E. Maier‐Reimer,et al.  Geochemical cycles in an Ocean General Circulation Model , 1993 .

[22]  Edward R. Abraham,et al.  The generation of plankton patchiness by turbulent stirring , 1998, Nature.

[23]  J. McWilliams,et al.  Localization of Deep Ocean Convection by a Mesoscale Eddy , 1998 .

[24]  P. E. An,et al.  Submesoscale Coastal Ocean Flows Detected by Very High Frequency Radar and Autonomous Underwater Vehicles , 2003 .

[25]  J. Tintoré,et al.  A study of the omega equation for diagnosing vertical motions at ocean fronts , 1996 .

[26]  K. Akitomo,et al.  Formation process of intermediate water in baroclinic current under cooling , 2001 .

[27]  J. Allen,et al.  Mesoscale Subduction at the Antarctic Polar Front Driven by Baroclinic Instability , 2001 .

[28]  R. Ferrari,et al.  Frontogenesis, and the Stratification of the Surface Mixed Layer, , 2008 .

[29]  M. Stern Interaction of a uniform wind stress with a geostrophic vortex , 1965 .

[30]  R. Pollard,et al.  Vorticity and vertical circulation at an ocean front , 1992 .

[31]  Geoffrey K. Vallis,et al.  Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[32]  B. Hoskins,et al.  A new look at the w-equation , 1978 .

[33]  Joaquín Tintoré,et al.  Mesoscale Dynamics and Vertical Motion in the Alborán Sea , 1991 .

[34]  R. Pollard,et al.  Large variations in potential vorticity at small spatial scales in the upper ocean , 1990, Nature.

[35]  R. Ferrari,et al.  Transformed Eulerian-Mean Theory. Part I: Nonquasigeostrophic Theory for Eddies on a Zonal-Mean Flow , 2005 .

[36]  Amit Tandon,et al.  An analysis of mechanisms for submesoscale vertical motion at ocean fronts , 2006 .

[37]  Patrice Klein,et al.  Oceanic Restratification Forced by Surface Frontogenesis , 2006 .

[38]  T. Platt,et al.  Biogenic fluxes of carbon and oxygen in the ocean , 1985, Nature.

[39]  Patrice Klein,et al.  Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime , 2001 .

[40]  Joaquín Tintoré,et al.  Circulation in the Alboran Sea as Determined by Quasi-Synoptic Hydrographic Observations. Part I: Three-Dimensional Structure of the Two Anticyclonic Gyres , 1996 .

[41]  Peter H. Stone,et al.  On Non-Geostrophic Baroclinic Stability , 1966 .

[42]  Libe Washburn,et al.  The evolving structure of an upwelling filament , 1985 .

[43]  P. Gent,et al.  Scaling Analysis of Curved Fronts. Validity of the Balance Equations and Semigeostrophy , 1994 .

[44]  Janet Campbell,et al.  Biogeochemical patchiness at the sea surface , 2002 .

[45]  B. Hoskins,et al.  Energy Spectra Predicted by Semi-Geostrophic Theories of Frontogenesis , 1978 .

[46]  M. McIntyre,et al.  Wave capture and wave–vortex duality , 2005, Journal of Fluid Mechanics.

[47]  B. Hoskins,et al.  A new look at the ?-equation , 1978 .

[48]  D. Smeed,et al.  Potential Vorticity and Vertical Velocity at the Iceland-Færœs Front , 1996 .

[49]  J. S. Sawyer The vertical circulation at meteorological fronts and its relation to frontogenesis , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[50]  G. Vallis Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation , 2017 .

[51]  L. Thomas Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity , 2008 .

[52]  A. Oschlies Can eddies make ocean deserts bloom? , 2002 .

[53]  B. Hoskins,et al.  The Mathematical Theory of Frontogenesis , 1982 .

[54]  D. Dritschel,et al.  Balance in non-hydrostatic rotating stratified turbulence , 2008, Journal of Fluid Mechanics.

[55]  James C. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes , 2008 .

[56]  M. Alford,et al.  Sub‐mesoscale lateral density structure in the oceanic surface mixed layer , 2006 .

[57]  D. Rudnick,et al.  Intensive surveys of the Azores Front 1. Tracers and dynamics , 1996 .

[58]  Carl Wunsch,et al.  VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS , 2004 .

[59]  A. Viudez,et al.  Potential Vorticity and the Quasigeostrophic and Semigeostrophic Mesoscale Vertical Velocity , 2004 .

[60]  Giulio Boccaletti,et al.  Mixed Layer Instabilities and Restratification , 2007 .

[61]  T. D. Dickey,et al.  Influence of mesoscale eddies on new production in the Sargasso Sea , 1998, Nature.

[62]  P. Stone On Non-Geostrophic Baroclinic Stability: Part II , 1970 .

[63]  J. Toggweiler,et al.  Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model , 1992 .

[64]  D. Rudnick On the skewness of vorticity in the upper ocean , 2001 .

[65]  P. Rhines,et al.  Nonlinear stratified spin-up , 2002, Journal of Fluid Mechanics.

[66]  Rudnick,et al.  Compensation of horizontal temperature and salinity gradients in the ocean mixed layer , 1999, Science.

[67]  R Tulloch,et al.  A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause , 2006, Proceedings of the National Academy of Sciences.

[68]  Andreas Oschlies,et al.  Improved Representation of Upper-Ocean Dynamics and Mixed Layer Depths in a Model of the North Atlantic on Switching from Eddy-Permitting to Eddy-Resolving Grid Resolution , 2002 .

[69]  P. Vélez-Belchí,et al.  Observation of a western Alborán gyre migration event , 2005 .

[70]  W. Jenkins,et al.  Nitrate flux into the euphotic zone near Bermuda , 1988, Nature.

[71]  B. Hoskins,et al.  The Forcing of Ageostrophic Motion According to the Semi-Geostrophic Equations and in an Isentropic Coordinate Model , 1977 .

[72]  W. J. Jenkins,et al.  Seasonal oxygen cycling and primary production in the Sargasso Sea , 1985 .

[73]  P. Quay,et al.  Experimental determination of the organic carbon flux from open-ocean surface waters , 1997, Nature.

[74]  James C. McWilliams,et al.  Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux , 2008 .

[75]  Raymond T. Pierrehumbert,et al.  Surface quasi-geostrophic dynamics , 1995, Journal of Fluid Mechanics.

[76]  David G. Dritschel,et al.  A balanced approach to modelling rotating stably stratified geophysical flows , 2003, Journal of Fluid Mechanics.

[77]  J. Marshall,et al.  Fluid Dynamics of Oceanic Thermocline Ventilation , 1992 .

[78]  A. Viudez,et al.  Diagnosing Mesoscale Vertical Motion from Horizontal Velocity and Density Data , 2005 .

[79]  M. Sundermeyer,et al.  Numerical Simulations of Lateral Dispersion by the Relaxation of Diapycnal Mixing Events , 2005 .

[80]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[81]  R. Kipp Shearman,et al.  Diagnosis of the Three-Dimensional Circulation Associated with Mesoscale Motion in the California Current , 1999 .

[82]  Adrian P. Martin,et al.  On estimates for the vertical nitrate flux due to eddy pumping , 2003 .

[83]  James C. McWilliams,et al.  Submesoscale, coherent vortices in the ocean , 1985 .

[84]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[85]  Francis P. Bretherton,et al.  Atmospheric Frontogenesis Models: Mathematical Formulation and Solution , 1972 .

[86]  J. G. Charney,et al.  On the Scale of Atmospheric Motions , 1990 .

[87]  Walter Munk,et al.  Spirals on the sea , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[88]  L. Thomas,et al.  Destruction of Potential Vorticity by Winds , 2005 .

[89]  C. Garrett,et al.  Mixed Layer Restratification Due to a Horizontal Density Gradient , 1994 .

[90]  J. Boyd The Energy Spectrum of Fronts: Time Evolution of Shocks in Burgers , 1992 .

[91]  I. Yavneh,et al.  From Stirring to Mixing of Momentum: Cascades from Balanced Flows to Dissipation in the Oceanic Interior , 2001 .

[92]  Thomas W. N. Haine,et al.  Gravitational, Symmetric, and Baroclinic Instability of the Ocean Mixed Layer , 1998 .

[93]  David Archer,et al.  Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean , 2000 .

[94]  R. Ferrari,et al.  Isopycnal Dispersion in NATRE , 2004 .

[95]  P. Gent,et al.  Consistent balanced models in bounded and periodic domains , 1983 .

[96]  Baylor Fox-Kemper,et al.  Parameterization of Mixed Layer Eddies. I: Theory and Diagnosis , 2007 .