A review of mathematical models for the formation of vascular networks.

[1]  M. J. Gómez-Benito,et al.  Numerical modelling of the angiogenesis process in wound contraction , 2013, Biomechanics and modeling in mechanobiology.

[2]  Min Wu,et al.  The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems. , 2013, Journal of theoretical biology.

[3]  L. Preziosi,et al.  Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels. , 2013, Journal of theoretical biology.

[4]  E. Brey,et al.  Vascularization of Engineered Tissues , 2012 .

[5]  L. Preziosi,et al.  A Cellular Potts Model simulating cell migration on and in matrix environments. , 2012, Mathematical biosciences and engineering : MBE.

[6]  Vincenzo Capasso,et al.  The role of stochasticity in a model of retinal angiogenesis , 2012 .

[7]  F J Vermolen,et al.  A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure , 2012, Journal of mathematical biology.

[8]  M A J Chaplain,et al.  Dynamics of angiogenesis during murine retinal development: a coupled in vivo and in silico study , 2012, Journal of The Royal Society Interface.

[9]  M A J Chaplain,et al.  A Hybrid Discrete-Continuum Mathematical Model of Pattern Prediction in the Developing Retinal Vasculature , 2012, Bulletin of mathematical biology.

[10]  A. Czirók,et al.  Pattern formation during vasculogenesis. , 2012, Birth defects research. Part C, Embryo today : reviews.

[11]  Ying Zheng,et al.  In vitro microvessels for the study of angiogenesis and thrombosis , 2012, Proceedings of the National Academy of Sciences.

[12]  Luigi Preziosi,et al.  Multiscale Developments of the Cellular Potts Model , 2012, Multiscale Model. Simul..

[13]  D. Mukhopadhyay,et al.  Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription* , 2011, The Journal of Biological Chemistry.

[14]  Marco Scianna,et al.  Multiscale model of tumor-derived capillary-like network formation , 2011, Networks Heterog. Media.

[15]  Pasquale Ciarletta,et al.  Emergence of microstructural patterns in skin cancer: a phase separation analysis in a binary mixture , 2011 .

[16]  K. Alitalo,et al.  The lymphatic vasculature in disease , 2011, Nature Medicine.

[17]  Andreas Deutsch,et al.  Early Embryonic Vascular Patterning by Matrix-Mediated Paracrine Signalling: A Mathematical Model Study , 2011, PloS one.

[18]  G. Camussi,et al.  Tumor exploits alternative strategies to achieve vascularization , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  L. Preziosi,et al.  A multiscale hybrid approach for vasculogenesis and related potential blocking therapies. , 2011, Progress in Biophysics and Molecular Biology.

[20]  B. Reglin,et al.  Modeling of angioadaptation: insights for vascular development. , 2011, The International journal of developmental biology.

[21]  Lei Xu,et al.  Normalization of the vasculature for treatment of cancer and other diseases. , 2011, Physiological reviews.

[22]  Eugenia Corvera Poiré,et al.  Tumor Angiogenesis and Vascular Patterning: A Mathematical Model , 2011, PloS one.

[23]  Robert J. Gillies,et al.  Multiscale Modelling of Vascular Tumour Growth in 3D: The Roles of Domain Size and Boundary Conditions , 2011, PloS one.

[24]  Aleksander S Popel,et al.  Module-based multiscale simulation of angiogenesis in skeletal muscle , 2011, Theoretical Biology and Medical Modelling.

[25]  S. McDougall,et al.  Dynamics of Angiogenesis During Wound Healing: A Coupled In Vivo and In Silico Study , 2011, Microcirculation.

[26]  K. Alitalo,et al.  Biological Basis of Therapeutic Lymphangiogenesis , 2011, Circulation.

[27]  H. Parsa,et al.  Uncovering the behaviors of individual cells within a multicellular microvascular community , 2011, Proceedings of the National Academy of Sciences.

[28]  M A J Chaplain,et al.  A Continuum Mathematical Model of the Developing Murine Retinal Vasculature , 2011, Bulletin of mathematical biology.

[29]  P. Carmeliet,et al.  Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications. , 2011, Current opinion in genetics & development.

[30]  Vittorio Cristini,et al.  Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach , 2010 .

[31]  Raghu Kalluri,et al.  Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. , 2010, Matrix biology : journal of the International Society for Matrix Biology.

[32]  A. Genazzani,et al.  Multiple Roles of Protein Kinase A in Arachidonic Acid–Mediated Ca2+ Entry and Tumor-Derived Human Endothelial Cell Migration , 2010, Molecular Cancer Research.

[33]  F. Bahram,et al.  VEGF-mediated signal transduction in lymphatic endothelial cells. , 2010, Pathophysiology : the official journal of the International Society for Pathophysiology.

[34]  Michael Höpfner,et al.  The shunt problem: control of functional shunting in normal and tumour vasculature , 2010, Nature Reviews Cancer.

[35]  H Rieger,et al.  Physical determinants of vascular network remodeling during tumor growth , 2010, The European physical journal. E, Soft matter.

[36]  Anusuya Das,et al.  A hybrid continuum–discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[37]  Vittorio Cristini,et al.  Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. , 2010, Journal of theoretical biology.

[38]  F J Vermolen,et al.  Computer simulations from a finite-element model for wound contraction and closure. , 2010, Journal of tissue viability.

[39]  Claudia Fischbach,et al.  Microfluidic culture models of tumor angiogenesis. , 2010, Tissue engineering. Part A.

[40]  Nak Won Choi,et al.  Oxygen-controlled three-dimensional cultures to analyze tumor angiogenesis. , 2010, Tissue engineering. Part A.

[41]  Dai Fukumura,et al.  Tumor Microvasculature and Microenvironment: Novel Insights Through Intravital Imaging in Pre‐Clinical Models , 2010, Microcirculation.

[42]  H. Kleinman,et al.  In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract , 2010, Nature Protocols.

[43]  Helen M. Byrne,et al.  Mathematical Model of Hyperbaric Oxygen Therapy Applied to Chronic Diabetic Wounds , 2010, Bulletin of mathematical biology.

[44]  G. Camussi,et al.  Characterization of molecular and functional alterations of tumor endothelial cells to design anti-angiogenic strategies. , 2010, Current vascular pharmacology.

[45]  Tatiana Segura,et al.  Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells , 2010, The Journal of cell biology.

[46]  K. Alitalo,et al.  Lymphangiogenesis: Molecular Mechanisms and Future Promise , 2010, Cell.

[47]  S. McDougall,et al.  Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents , 2010 .

[48]  Nick Jagiella,et al.  Modeling Steps from Benign Tumor to Invasive Cancer: Examples of Intrinsically Multiscale Problems , 2010 .

[49]  L Preziosi,et al.  An elasto-visco-plastic model of cell aggregates. , 2010, Journal of theoretical biology.

[50]  Xiaoming Zheng,et al.  A Cell-based Model of Endothelial Cell Migration, Proliferation and Maturation During Corneal Angiogenesis , 2010, Bulletin of mathematical biology.

[51]  A. Noël,et al.  Lymphangiogenesis: in vitro and in vivo models , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[52]  G. Székely,et al.  A computational model of intussusceptive microvascular growth and remodeling. , 2009, Journal of theoretical biology.

[53]  A. Fiorio Pla,et al.  Endothelial calcium machinery and angiogenesis: understanding physiology to interfere with pathology. , 2009, Current medicinal chemistry.

[54]  L. Munaron A Tridimensional Model of Proangiogenic Calcium Signals in Endothelial Cells , 2009 .

[55]  J. Glazier,et al.  3D Multi-Cell Simulation of Tumor Growth and Angiogenesis , 2009, PloS one.

[56]  Q. Long,et al.  Numerical simulation of tumor-induced angiogenesis influenced by the extra-cellular matrix mechanical environment , 2009 .

[57]  L. Preziosi,et al.  Cell adhesion mechanisms and stress relaxation in the mechanics of tumours , 2009, Biomechanics and modeling in mechanobiology.

[58]  Avner Friedman,et al.  A mathematical model of ischemic cutaneous wounds , 2009, Proceedings of the National Academy of Sciences.

[59]  Luigi Preziosi,et al.  Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor. , 2009, Journal of theoretical biology.

[60]  H Rieger,et al.  Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. , 2009, Journal of theoretical biology.

[61]  Yi Jiang,et al.  Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis , 2009, PLoS Comput. Biol..

[62]  Helen M. Byrne,et al.  A Three Species Model to Simulate Application of Hyperbaric Oxygen Therapy to Chronic Wounds , 2009, PLoS Comput. Biol..

[63]  Luigi Preziosi,et al.  Mathematical modelling of the Warburg effect in tumour cords. , 2009, Journal of theoretical biology.

[64]  Mauro Ferrari,et al.  Multiparameter computational modeling of tumor invasion. , 2009, Cancer research.

[65]  E Schöll,et al.  Comparing the growth kinetics of cell populations in two and three dimensions. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  A.A. Qutub,et al.  Multiscale models of angiogenesis , 2009, IEEE Engineering in Medicine and Biology Magazine.

[67]  S. McDougall,et al.  Multiscale modelling and nonlinear simulation of vascular tumour growth , 2009, Journal of mathematical biology.

[68]  Philip K Maini,et al.  Angiogenesis and vascular remodelling in normal and cancerous tissues , 2009, Journal of mathematical biology.

[69]  Aleksander S. Popel,et al.  Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting , 2009, BMC Systems Biology.

[70]  Nicholas S. Flann,et al.  Discovering novel cancer therapies: A computational modeling and search approach , 2008, 2008 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.

[71]  Axel R Pries,et al.  Modeling Structural Adaptation of Microcirculation , 2008, Microcirculation.

[72]  Shayn M Peirce,et al.  Computational and Mathematical Modeling of Angiogenesis , 2008, Microcirculation.

[73]  Michael Bergdorf,et al.  A hybrid model for three-dimensional simulations of sprouting angiogenesis. , 2008, Biophysical journal.

[74]  Andras Czirok,et al.  Multicellular sprouting in vitro. , 2008, Biophysical journal.

[75]  H. Frieboes,et al.  Three-dimensional multispecies nonlinear tumor growth--I Model and numerical method. , 2008, Journal of theoretical biology.

[76]  A. Fowler,et al.  Network Development in Biological Gels: Role in Lymphatic Vessel Development , 2008, Bulletin of mathematical biology.

[77]  Jennifer A. Thackham,et al.  The use of hyperbaric oxygen therapy to treat chronic wounds: A review , 2008, Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society.

[78]  B. Bussolati,et al.  Arachidonic Acid–Induced Ca2+ Entry Is Involved in Early Steps of Tumor Angiogenesis , 2008, Molecular Cancer Research.

[79]  H. Ding,et al.  Convected element method for simulation of angiogenesis , 2008, Journal of mathematical biology.

[80]  J. West,et al.  Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. , 2008, Current topics in medicinal chemistry.

[81]  Avner Friedman,et al.  Wound angiogenesis as a function of tissue oxygen tension: A mathematical model , 2008, Proceedings of the National Academy of Sciences.

[82]  K. Alitalo,et al.  Molecular biology and pathology of lymphangiogenesis. , 2008, Annual review of pathology.

[83]  H Rieger,et al.  Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor. , 2008, Journal of theoretical biology.

[84]  P K Maini,et al.  A simple mechanistic model of sprout spacing in tumour-associated angiogenesis. , 2008, Journal of theoretical biology.

[85]  Holger Gerhardt,et al.  Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. , 2008, Journal of theoretical biology.

[86]  H. Frieboes,et al.  Computer simulation of glioma growth and morphology , 2007, NeuroImage.

[87]  Gábor Székely,et al.  A Coupled Finite Element Model of Tumor Growth and Vascularization , 2007, MICCAI.

[88]  H M Byrne,et al.  Modelling the Role of Angiogenesis and Vasculogenesis in Solid Tumour Growth , 2007, Bulletin of mathematical biology.

[89]  Q. Long,et al.  Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis , 2007 .

[90]  Cameron F Abrams,et al.  Strategies to enhance capillary formation inside biomaterials: a computational study. , 2007, Tissue engineering.

[91]  Panayotis G. Kevrekidis,et al.  A hybrid model for tumor-induced angiogenesis in the cornea in the presence of inhibitors , 2007, Math. Comput. Model..

[92]  W. Bloch,et al.  Endothelial precursor cell migration during vasculogenesis. , 2007, Circulation research.

[93]  S. Seaman,et al.  Genes that distinguish physiological and pathological angiogenesis. , 2007, Cancer cell.

[94]  K. Alitalo,et al.  Molecular regulation of angiogenesis and lymphangiogenesis , 2007, Nature Reviews Molecular Cell Biology.

[95]  Yi Jiang,et al.  A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. , 2007, Biophysical journal.

[96]  J. Lowengrub,et al.  Nonlinear simulation of the effect of microenvironment on tumor growth. , 2007, Journal of theoretical biology.

[97]  Luca Munaron,et al.  Cytosolic calcium microdomains by arachidonic acid and nitric oxide in endothelial cells. , 2007, Cell calcium.

[98]  Luigi Preziosi,et al.  Modeling cell movement in anisotropic and heterogeneous network tissues , 2007, Networks Heterog. Media.

[99]  A. Bertuzzi,et al.  Cell resensitization after delivery of a cycle-specific anticancer drug and effect of dose splitting: learning from tumour cords. , 2007, Journal of theoretical biology.

[100]  Bruce T. Murray,et al.  Adaptive finite element methodology for tumour angiogenesis modelling , 2007 .

[101]  Shulamit Levenberg,et al.  Tissue Engineering of Vascularized Cardiac Muscle From Human Embryonic Stem Cells , 2007, Circulation research.

[102]  Salvatore Torquato,et al.  Modeling the effects of vasculature evolution on early brain tumor growth. , 2006, Journal of theoretical biology.

[103]  Andras Czirok,et al.  Network formation of tissue cells via preferential attraction to elongated structures. , 2006, Physical review letters.

[104]  S. Stacker,et al.  Tumor lymphangiogenesis and metastatic spread—New players begin to emerge , 2006, International journal of cancer.

[105]  M. Detmar,et al.  New insights into the molecular control of the lymphatic vascular system and its role in disease. , 2006, The Journal of investigative dermatology.

[106]  Luigi Preziosi,et al.  Exogenous control of vascular network formation in vitro: a mathematical model , 2006, Networks Heterog. Media.

[107]  Helen M. Byrne,et al.  The impact of cell crowding and active cell movement on vascular tumour growth , 2006, Networks Heterog. Media.

[108]  S. McDougall,et al.  Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. , 2006, Journal of theoretical biology.

[109]  S. McDougall,et al.  Mathematical modeling of tumor-induced angiogenesis. , 2006, Annual review of biomedical engineering.

[110]  L. Preziosi,et al.  Mechanics and Chemotaxis in the Morphogenesis of Vascular Networks , 2006, Bulletin of mathematical biology.

[111]  Melody A Swartz,et al.  Autologous morphogen gradients by subtle interstitial flow and matrix interactions. , 2006, Biophysical journal.

[112]  Alexander R. A. Anderson,et al.  Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis , 2006, Math. Comput. Model..

[113]  P. Maini,et al.  MODELLING THE RESPONSE OF VASCULAR TUMOURS TO CHEMOTHERAPY: A MULTISCALE APPROACH , 2006 .

[114]  R. Ji Lymphatic endothelial cells, lymphangiogenesis, and extracellular matrix. , 2006, Lymphatic research and biology.

[115]  P. Maini,et al.  Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy , 2006 .

[116]  Gábor Székely,et al.  A Multiphysics Model of Capillary Growth and Remodeling , 2006, International Conference on Computational Science.

[117]  J. Sethian,et al.  Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method , 2006, Journal of mathematical biology.

[118]  Peter Vajkoczy,et al.  EphB4 controls blood vascular morphogenesis during postnatal angiogenesis , 2006, The EMBO journal.

[119]  A. Sapino,et al.  Isolation and characterization of human breast tumor-derived endothelial cells. , 2006, Oncology reports.

[120]  Howard A. Levine,et al.  A mathematical model for the onset of avascular tumor growth in response to the loss of p53 function , 2006, Cancer informatics.

[121]  Peter Carmeliet,et al.  Angiogenesis in life, disease and medicine , 2005, Nature.

[122]  L. Munaron,et al.  ©2005 FASEB The FASEB Journal express article 10.1096/fj.05-4110fje. Published online October 4, 2005. Regulation of noncapacitative calcium entry by arachidonic acid and nitric oxide in endothelial cells , 2022 .

[123]  C. Patrick,et al.  Nonlinear behaviors of capillary formation in a deterministic angiogenesis model , 2005 .

[124]  Federica Boschetti,et al.  Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[125]  A. Bertuzzi,et al.  A MATHEMATICAL MODEL FOR TUMOR CORDS INCORPORATING THE FLOW OF INTERSTITIAL FLUID , 2005 .

[126]  Gábor Székely,et al.  Simulating Vascular Systems in Arbitrary Anatomies , 2005, MICCAI.

[127]  K K Parker,et al.  Symmetry-breaking in mammalian cell cohort migration during tissue pattern formation: role of random-walk persistence. , 2005, Cell motility and the cytoskeleton.

[128]  A. Bertuzzi,et al.  Interstitial Pressure And Fluid Motion In Tumor Cords , 2005 .

[129]  D-S Lee,et al.  Flow correlated percolation during vascular remodeling in growing tumors. , 2005, Physical review letters.

[130]  Dai Fukumura,et al.  Engineering vascularized tissue , 2005, Nature Biotechnology.

[131]  H Rieger,et al.  Vascular network remodeling via vessel cooption, regression and growth in tumors. , 2005, Journal of theoretical biology.

[132]  D. Kohane,et al.  Engineering vascularized skeletal muscle tissue , 2005, Nature Biotechnology.

[133]  Roeland M. H. Merks,et al.  Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth , 2005, PLoS Comput. Biol..

[134]  Roeland M. H. Merks,et al.  Contact-inhibited chemotactic motility: Role in de novo and sprouting blood vessel growth , 2005 .

[135]  R. Kowalczyk,et al.  Preventing blow-up in a chemotaxis model , 2005 .

[136]  G. Székely,et al.  Computational model of flow-tissue interactions in intussusceptive angiogenesis. , 2005, Journal of theoretical biology.

[137]  Lucie Germain,et al.  Inosculation of Tissue‐Engineered Capillaries with the Host's Vasculature in a Reconstructed Skin Transplanted on Mice , 2005, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[138]  Philip K Maini,et al.  A design principle for vascular beds: the effects of complex blood rheology. , 2005, Microvascular research.

[139]  Alexander R. A. Anderson,et al.  Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies , 2005, Math. Comput. Model..

[140]  Antonio Fasano,et al.  Dynamics of tumour cords following changes in oxygen availability: A model including a delayed exit from quiescence , 2005, Math. Comput. Model..

[141]  A. Pries,et al.  Control of blood vessel structure: insights from theoretical models. , 2005, American journal of physiology. Heart and circulatory physiology.

[142]  Shuyu Sun,et al.  A deterministic model of growth factor-induced angiogenesis , 2005, Bulletin of mathematical biology.

[143]  Luigi Preziosi,et al.  A review of vasculogenesis models , 2005 .

[144]  V. Cristini,et al.  Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method , 2005, Bulletin of mathematical biology.

[145]  B. Perthame,et al.  Derivation of hyperbolic models for chemosensitive movement , 2005, Journal of mathematical biology.

[146]  R. Jain Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy , 2005, Science.

[147]  Melody A Swartz,et al.  Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. , 2004, Microvascular research.

[148]  K. Klinger,et al.  Alterations in Vascular Gene Expression in Invasive Breast Carcinoma , 2004, Cancer Research.

[149]  M. Plank,et al.  Lattice and non-lattice models of tumour angiogenesis , 2004, Bulletin of mathematical biology.

[150]  Davide Carlo Ambrosi,et al.  Cell directional and chemotaxis in vascular morphogenesis , 2004 .

[151]  Roeland M. H. Merks,et al.  Cell-Oriented Modeling of In Vitro Capillary Development , 2004, ACRI.

[152]  M. Plank,et al.  A mathematical model of tumour angiogenesis, regulated by vascular endothelial growth factor and the angiopoietins. , 2004, Journal of theoretical biology.

[153]  M. Karkkainen,et al.  Lymphatic vasculature: development, molecular regulation and role in tumor metastasis and inflammation. , 2004, Trends in immunology.

[154]  A. Coniglio,et al.  Percolation and Burgers' dynamics in a model of capillary formation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[155]  Jacques Ohayon,et al.  Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. , 2004, Journal of theoretical biology.

[156]  H. Othmer,et al.  Mathematical modeling of tumor-induced angiogenesis , 2004, Journal of mathematical biology.

[157]  P. Friedl Prespecification and plasticity: shifting mechanisms of cell migration. , 2004, Current opinion in cell biology.

[158]  D. DiJulio,et al.  Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide. , 2004, Cellular signalling.

[159]  P. Maini,et al.  A cellular automaton model for tumour growth in inhomogeneous environment. , 2003, Journal of theoretical biology.

[160]  Sophia Maggelakis,et al.  Modeling the role of angiogenesis in epidermal wound healing , 2003 .

[161]  D. McDonald,et al.  Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. , 2003, The American journal of pathology.

[162]  Antonio Fasano,et al.  Regression and regrowth of tumour cords following single-dose anticancer treatment , 2003, Bulletin of mathematical biology.

[163]  Donna J. Webb,et al.  New dimensions in cell migration , 2003, Nature Cell Biology.

[164]  M. Berridge,et al.  Calcium: Calcium signalling: dynamics, homeostasis and remodelling , 2003, Nature Reviews Molecular Cell Biology.

[165]  D. Manoussaki A mechanochemical model of angiogenesis and vasculogenesis , 2003 .

[166]  N. Ferrara,et al.  The biology of VEGF and its receptors , 2003, Nature Medicine.

[167]  O Damour,et al.  A tissue‐engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary‐like tube formation in vitro , 2003, The British journal of dermatology.

[168]  M J Plank,et al.  A reinforced random walk model of tumour angiogenesis and anti-angiogenic strategies. , 2003, Mathematical medicine and biology : a journal of the IMA.

[169]  G. Camussi,et al.  Altered angiogenesis and survival in human tumor‐derived endothelial cells , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[170]  R. Gariano Cellular mechanisms in retinal vascular development , 2003, Progress in Retinal and Eye Research.

[171]  Melody A. Swartz,et al.  Interstitial Flow as a Guide for Lymphangiogenesis , 2003, Circulation research.

[172]  L. Preziosi,et al.  Modeling the early stages of vascular network assembly , 2003, The EMBO journal.

[173]  L Preziosi,et al.  Percolation, morphogenesis, and burgers dynamics in blood vessels formation. , 2003, Physical review letters.

[174]  Sophia Maggelakis,et al.  A mathematical model of tissue replacement during epidermal wound healing , 2003 .

[175]  V. Cristini,et al.  Nonlinear simulation of tumor growth , 2003, Journal of mathematical biology.

[176]  J. Murray,et al.  On the mechanochemical theory of biological pattern formation with application to vasculogenesis. , 2003, Comptes rendus biologies.

[177]  Peter Friedl,et al.  Compensation mechanism in tumor cell migration , 2003, The Journal of cell biology.

[178]  Howard A. Levine,et al.  A Mathematical Model for the Role of Cell Signal Transduction in the Initiation and Inhibition of Angiogenesis , 2003, Growth factors.

[179]  L. Munaron Calcium signalling and control of cell proliferation by tyrosine kinase receptors (review). , 2002, International journal of molecular medicine.

[180]  Holger Gerhardt,et al.  Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. , 2002, Genes & development.

[181]  Napoleone Ferrara,et al.  VEGF and the quest for tumour angiogenesis factors , 2002, Nature Reviews Cancer.

[182]  Gábor Székely,et al.  Macroscopic Modeling of Vascular Systems , 2002, MICCAI.

[183]  B. Sleeman,et al.  Tumour induced angiogenesis as a reinforced random walk: Modelling capillary network formation without endothelial cell proliferation , 2002 .

[184]  K. Alitalo,et al.  Metastasis: Lymphangiogenesis and cancer metastasis , 2002, Nature Reviews Cancer.

[185]  S. McDougall,et al.  Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies , 2002, Bulletin of mathematical biology.

[186]  Antonio Fasano,et al.  Cell kinetics in tumour cords studied by a model with variable cell cycle length. , 2002, Mathematical biosciences.

[187]  L. Preziosi,et al.  ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .

[188]  L. Griffith,et al.  Tissue Engineering--Current Challenges and Expanding Opportunities , 2002, Science.

[189]  Marcus Fruttiger,et al.  Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. , 2002, Investigative ophthalmology & visual science.

[190]  B. Reglin,et al.  Structural Adaptation of Vascular Networks: Role of the Pressure Response , 2001, Hypertension.

[191]  M. Skobe,et al.  Lymphatic function, lymphangiogenesis, and cancer metastasis , 2001, Microscopy research and technique.

[192]  A. Fiorio Pla,et al.  Calcium influx, arachidonic acid,and control of endothelial cell proliferation. , 2001, Cell calcium.

[193]  K. Alitalo,et al.  Lymphatic Vessels as Targets of Tumor Therapy? , 2001, The Journal of experimental medicine.

[194]  M Scalerandi,et al.  Emergence of taxis and synergy in angiogenesis. , 2001, Physical review letters.

[195]  B. Reglin,et al.  Structural adaptation of microvascular networks: functional roles of adaptive responses. , 2001, American journal of physiology. Heart and circulatory physiology.

[196]  Rakesh K. Jain,et al.  Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy , 2001, Nature Medicine.

[197]  M. Swartz,et al.  The physiology of the lymphatic system. , 2001, Advanced drug delivery reviews.

[198]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[199]  V. Bautch,et al.  Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. , 2001, Developmental biology.

[200]  A. Baumgaertner,et al.  Autocatalytic polymerization generates persistent random walk of crawling cells. , 2001, Physical review letters.

[201]  D. Vittet,et al.  In Vitro Models of Vasculogenesis and Angiogenesis , 2001, Laboratory Investigation.

[202]  M. Pepper,et al.  Lymphangiogenesis and tumor metastasis: myth or reality? , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[203]  B. Sleeman,et al.  Mathematical modeling of the onset of capillary formation initiating angiogenesis , 2001, Journal of mathematical biology.

[204]  L. Orci,et al.  Vascular endothelial growth factor‐C‐mediated lymphangiogenesis promotes tumour metastasis , 2001, The EMBO journal.

[205]  A. Fiorio Pla,et al.  Calcium influx induced by activation of tyrosine kinase receptors in cultured bovine aortic endothelial cells , 2000, Journal of cellular physiology.

[206]  B. Sleeman,et al.  A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis. , 2000, Mathematical biosciences.

[207]  M. Chaplain,et al.  Mathematical Modelling of Angiogenesis , 2000, Journal of Neuro-Oncology.

[208]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[209]  A. Larue,et al.  VEGF regulates cell behavior during vasculogenesis. , 2000, Developmental biology.

[210]  Fordyce A. Davidson,et al.  Steady-state solutions of a generic model for the formation of capillary networks , 2000, Appl. Math. Lett..

[211]  A. Bertuzzi,et al.  Cell kinetics in a tumour cord. , 2000, Journal of theoretical biology.

[212]  R K Jain,et al.  Growth factors: Formation of endothelial cell networks , 2000, Nature.

[213]  L. Preziosi,et al.  ADVECTION-DIFFUSION MODELS FOR SOLID TUMOUR EVOLUTION IN VIVO AND RELATED FREE BOUNDARY PROBLEM , 2000 .

[214]  M. J. Holmes,et al.  A mathematical model of tumour angiogenesis incorporating cellular traction and viscoelastic effects. , 2000, Journal of theoretical biology.

[215]  Alexander R. A. Anderson,et al.  A mathematical analysis of a model for capillary network formation in the absence of endothelial cell proliferation , 1999 .

[216]  Milan Mrksich,et al.  Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates , 1999, In Vitro Cellular & Developmental Biology - Animal.

[217]  L. Akslen,et al.  Angiogenesis is prognostically important in vertical growth phase melanomas. , 1999, International journal of oncology.

[218]  R K Jain,et al.  Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. , 1999, Biophysical journal.

[219]  J. Peng,et al.  Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. , 1999, Development.

[220]  M. Markus,et al.  Simulation of vessel morphogenesis using cellular automata. , 1999, Mathematical biosciences.

[221]  G. Neufeld,et al.  Vascular endothelial growth factor (VEGF) and its receptors , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[222]  M. Chaplain,et al.  Continuous and discrete mathematical models of tumor-induced angiogenesis , 1998, Bulletin of mathematical biology.

[223]  A. Pries,et al.  Structural adaptation and stability of microvascular networks: theory and simulations. , 1998, American journal of physiology. Heart and circulatory physiology.

[224]  Alexander R. A. Anderson,et al.  A Mathematical Model for Capillary Network Formation in the Absence of Endothelial Cell Proliferation , 1998 .

[225]  P. Maini,et al.  A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. , 1997, IMA journal of mathematics applied in medicine and biology.

[226]  B. Keyt,et al.  The crystal structure of vascular endothelial growth factor (VEGF) refined to 1.93 A resolution: multiple copy flexibility and receptor binding. , 1997, Structure.

[227]  M. Chaplain,et al.  Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. , 1997, IMA journal of mathematics applied in medicine and biology.

[228]  L. Munaron,et al.  Arachidonic acid mediates calcium influx induced by basic fibroblast growth factor in Balb-c 3T3 fibroblasts. , 1997, Cell calcium.

[229]  Hans G. Othmer,et al.  Aggregation, Blowup, and Collapse: The ABC's of Taxis in Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[230]  Howard A. Levine,et al.  A System of Reaction Diffusion Equations Arising in the Theory of Reinforced Random Walks , 1997, SIAM J. Appl. Math..

[231]  W. Risau,et al.  Mechanisms of angiogenesis , 1997, Nature.

[232]  Sean P. Palecek,et al.  Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness , 1997, Nature.

[233]  E. Neher,et al.  Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. , 1997, Biophysical journal.

[234]  H M Byrne,et al.  On the rôle of angiogenesis in wound healing , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[235]  J. Murray,et al.  A mechanical model for the formation of vascular networks in vitro , 1996, Acta biotheoretica.

[236]  T. Iijima,et al.  Extrusion mechanisms of intracellular Ca2+ in human aortic endothelial cells. , 1996, European journal of pharmacology.

[237]  A. Pries,et al.  Biophysical aspects of blood flow in the microvasculature. , 1996, Cardiovascular research.

[238]  Sophia Maggelakis,et al.  A mathematical model of growth factor induced capillary growth in the retina , 1996 .

[239]  G. Kaiser,et al.  Wavelet Filtering with the Mellin Transform , 1996, math-ph/0108013.

[240]  H M Byrne,et al.  A model of wound-healing angiogenesis in soft tissue. , 1996, Mathematical biosciences.

[241]  E. Sage,et al.  Between molecules and morphology. Extracellular matrix and creation of vascular form. , 1995, The American journal of pathology.

[242]  M. Chaplain,et al.  Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis , 1995 .

[243]  M. Iruela-Arispe,et al.  Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: Planar cultures as models of vascular development , 1995, In Vitro Cellular & Developmental Biology - Animal.

[244]  D A Lauffenburger,et al.  Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength , 1993, The Journal of cell biology.

[245]  Glazier,et al.  Simulation of the differential adhesion driven rearrangement of biological cells. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[246]  P. Adjei,et al.  Rapid Ca2+ extrusion via the Na+/Ca2+ exchanger of the human platelet , 1992, The Journal of Membrane Biology.

[247]  Glazier,et al.  Simulation of biological cell sorting using a two-dimensional extended Potts model. , 1992, Physical review letters.

[248]  D. Nicoll,et al.  Sodium-calcium exchange. , 1992, Current opinion in cell biology.

[249]  M. Iruela-Arispe,et al.  Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. , 1992, Laboratory investigation; a journal of technical methods and pathology.

[250]  C. Bugg,et al.  Three-dimensional structure of recombinant human granulocyte-macrophage colony-stimulating factor. , 1992, Journal of molecular biology.

[251]  H. Kleinman,et al.  Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro , 1989, Cell.

[252]  H. Kleinman,et al.  Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures , 1988, The Journal of cell biology.

[253]  D. Balding,et al.  A mathematical model of tumour-induced capillary growth. , 1985, Journal of theoretical biology.

[254]  S. Martin,et al.  The kinetics of calcium binding to calmodulin: Quin 2 and ANS stopped-flow fluorescence studies. , 1984, Biochemical and biophysical research communications.

[255]  G. Oster,et al.  Mechanical aspects of mesenchymal morphogenesis. , 1983, Journal of embryology and experimental morphology.

[256]  Judah Folkman,et al.  Angiogenesis in vitro , 1980, Nature.

[257]  Deakin As,et al.  Model for initial vascular patterns in melanoma transplants. , 1976 .

[258]  M. S. Steinberg,et al.  Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. , 1970, The Journal of experimental zoology.

[259]  Malcolm S. Steinberg,et al.  Reconstruction of Tissues by Dissociated Cells , 1963 .

[260]  A. Guyton,et al.  Textbook of Medical Physiology , 1961 .

[261]  L. Goodman,et al.  The Pharmacological Basis of Therapeutics , 1976 .

[262]  A Krogh,et al.  The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue , 1919, The Journal of physiology.

[263]  Trachette L. Jackson,et al.  Modeling Tumor Vasculature: Molecular, Cellular, and Tissue Level Aspects and Implications , 2012 .

[264]  W. Jiang,et al.  Lymphangiogenesis and cancer metastasis. , 2011, Frontiers in bioscience.

[265]  H. Frieboes,et al.  Nonlinear modelling of cancer: bridging the gap between cells and tumours , 2010, Nonlinearity.

[266]  A. Czirók,et al.  The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts. , 2010, Mathematical modelling of natural phenomena.

[267]  I. Vignon-Clementel,et al.  Modeling Steps from a Begnin Tumor to an Invasive Cancer: Examples of Instrinsically Multiscale Problems , 2010 .

[268]  M.Welter,et al.  Blood vessel network remodelling during tumor growth , 2010 .

[269]  Vincenzo Capasso,et al.  Stochastic modelling of tumour-induced angiogenesis , 2009, Journal of mathematical biology.

[270]  K. Painter,et al.  A User's Guide to Pde Models for Chemotaxis , 2022 .

[271]  F. Vermolen,et al.  A Suite of Continuum Models for Different Aspects in Wound Healing , 2009 .

[272]  M. Detmar Tumor and Lymph Node Lymphangiogenesis , 2009 .

[273]  T. Alarcón Modelling tumour-induced angiogenesis : A review of individual-based models and multiscale approaches , 2008 .

[274]  G. Lolas,et al.  The Lymphatic Vascular System in Lymphangiogenesis Invasion and Metastasis A Mathematical Approach , 2008 .

[275]  A. Bertuzzia,et al.  Reoxygenation and Split-Dose Response to Radiation in a Tumour Model with Krogh-Type Vascular Geometry , 2008 .

[276]  Harsh V Jain,et al.  Modeling the VEGF–Bcl-2–CXCL8 Pathway in Intratumoral Agiogenesis , 2008, Bulletin of mathematical biology.

[277]  Roeland M. H. Merks,et al.  The Glazier-Graner-Hogeweg Model: Extensions, Future Directions, and Opportunities for Further Study , 2007 .

[278]  Melody A Swartz,et al.  Engineered blood and lymphatic capillaries in 3‐D VEGF‐fibrin‐collagen matrices with interstitial flow , 2007, Biotechnology and bioengineering.

[279]  A. Tosin,et al.  Mathematical model of tumour cord growth along the source of nutrient , 2007 .

[280]  James A. Glazier,et al.  Magnetization to Morphogenesis: A Brief History of the Glazier-Graner-Hogeweg Model , 2007 .

[281]  Alexander R. A. Anderson,et al.  Single-Cell-Based Models in Biology and Medicine , 2007 .

[282]  P. Hogeweg,et al.  The Cellular Potts Model and Biophysical Properties of Cells, Tissues and Morphogenesis , 2007 .

[283]  Antonio Fasano,et al.  ATP Production and Necrosis Formation in a Tumour Spheroid Model , 2007 .

[284]  Roeland M. H. Merks,et al.  Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. , 2006, Developmental biology.

[285]  L. Munaron Intracellular calcium, endothelial cells and angiogenesis. , 2006, Recent patents on anti-cancer drug discovery.

[286]  Roeland M. H. Merks,et al.  Dynamic mechanisms of blood vessel growth , 2006, Nonlinearity.

[287]  BYRNEa,et al.  Mathematical Modelling of Angiogenesis in Wound Healing : Comparison of Theory and Experiment , 2006 .

[288]  Mary F. Wheeler,et al.  Multiscale Angiogenesis Modeling Using Mixed Finite Element Methods , 2005, Multiscale Model. Simul..

[289]  Helen M. Byrne,et al.  A Multiple Scale Model for Tumor Growth , 2005, Multiscale Model. Simul..

[290]  A. Bertuzzi,et al.  Interstitial pressure and extracellular fluid motion in tumor cords. , 2005, Mathematical biosciences and engineering : MBE.

[291]  A. Friedman,et al.  ANALYSIS OF A MATHEMATICAL MODEL OF TUMOR LYMPHANGIOGENESIS , 2005 .

[292]  Antonio Fasano,et al.  A Free Boundary Problem with Unilateral Constraints Describing the Evolution of a Tumor Cord Under the Influence of Cell Killing Agents , 2005, SIAM J. Math. Anal..

[293]  Davide Carlo Ambrosi,et al.  Cell directional persistence and chemotaxis in vascular morphogenesis , 2005 .

[294]  K. Philipson,et al.  Sodium-calcium exchange: Recent advances , 2004, Basic Research in Cardiology.

[295]  H. Esumi,et al.  Reciprocal regulation between nitric oxide and vascular endothelial growth factor in angiogenesis. , 2003, Acta biochimica Polonica.

[296]  Luigi Preziosi,et al.  Multiscale modeling and mathematical problems related to tumor evolution and medical therapy. , 2003 .

[297]  A. Strongin,et al.  Compensation mechanism in tumor cell migration: mesenchymal–amoeboid transition after blocking of pericellular proteolysis , 2003 .

[298]  E. A. Gaffney,et al.  Investigating a simple model of cutaneous wound healing angiogenesis , 2002, Journal of mathematical biology.

[299]  F. Yuan,et al.  Numerical simulations of angiogenesis in the cornea. , 2001, Microvascular research.

[300]  B. Sleeman,et al.  Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma , 2001, Bulletin of mathematical biology.

[301]  P. Tracqui,et al.  Mechanical signalling and angiogenesis. The integration of cell-extracellular matrix couplings. , 2000, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[302]  Sophia Maggelakis,et al.  A mathematical model of retinal neovascularization , 1999 .

[303]  P. Hogeweg,et al.  Modelling Morphogenesis: From Single Cells to Crawling Slugs. , 1997, Journal of theoretical biology.

[304]  A. Taylor,et al.  Muscle capillarization O2 diffusion distance, and VO2 kinetics in old and young individuals. , 1997, Journal of applied physiology.

[305]  James D. Murray,et al.  A Mechanical Theory of In Vitro Vascular Network Formation , 1996 .

[306]  M. Chaplain,et al.  Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. , 1996, Invasion & metastasis.

[307]  H M Byrne,et al.  Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. , 1995, Bulletin of mathematical biology.

[308]  R J Jarvis,et al.  A mathematical analysis of a model for tumour angiogenesis , 1995, Journal of mathematical biology.

[309]  A. Ravve,et al.  Principles of Polymer Chemistry , 1995 .

[310]  M. Chaplain,et al.  A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. , 1993, IMA journal of mathematics applied in medicine and biology.

[311]  C. Guarneri Cornell University Press , 1991 .

[312]  G F Oster,et al.  Generation of biological pattern and form. , 1984, IMA journal of mathematics applied in medicine and biology.

[313]  G. Oster,et al.  Cell traction models for generating pattern and form in morphogenesis , 1984, Journal of mathematical biology.

[314]  G F Oster,et al.  A mechanical model for mesenchymal morphogenesis , 1983, Journal of mathematical biology.

[315]  J. Husband Textbook of Medical Physiology. W. B. Saunders Company, Philadelphia, London, Toronto, 1133 pages, approx. 900 figures and diagrams. Price £18.00. , 1978 .

[316]  A S Deakin,et al.  Model for initial vascular patterns in melanoma transplants. , 1976, Growth.

[317]  M. S. Steinberg,et al.  Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. , 1963, Science.