Adapting non-hierarchical multilabel classification methods for hierarchical multilabel classification
暂无分享,去创建一个
Alex Alves Freitas | André Carlos Ponce de Leon Ferreira de Carvalho | Ricardo Cerri | A. Carvalho | R. Cerri | A. Freitas
[1] Ee-Peng Lim,et al. Hierarchical text classification and evaluation , 2001, Proceedings 2001 IEEE International Conference on Data Mining.
[2] Yiming Yang,et al. RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..
[3] Michael I. Jordan,et al. Advances in Neural Information Processing Systems 30 , 1995 .
[4] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[5] Saso Dzeroski,et al. Hierarchical annotation of medical images , 2011, Pattern Recognit..
[6] Grigorios Tsoumakas,et al. Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.
[7] Luc De Raedt,et al. Top-Down Induction of Clustering Trees , 1998, ICML.
[8] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[9] Alex Alves Freitas,et al. A Hierarchical Classification Ant Colony Algorithm for Predicting Gene Ontology Terms , 2009, EvoBIO.
[10] Koby Crammer,et al. On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..
[11] Yoram Singer,et al. Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.
[12] Alex Alves Freitas,et al. A Tutorial on Multi-label Classification Techniques , 2009, Foundations of Computational Intelligence.
[13] Robert E. Schapire,et al. Hierarchical multi-label prediction of gene function , 2006, Bioinform..
[14] D. Kibler,et al. Instance-based learning algorithms , 2004, Machine Learning.
[15] Kurt Hornik,et al. Open-source machine learning: R meets Weka , 2009, Comput. Stat..
[16] Dmitrij Frishman,et al. MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..
[17] Jason Weston,et al. Kernel methods for Multi-labelled classification and Categ orical regression problems , 2001, NIPS 2001.
[18] W. Krauth,et al. Learning algorithms with optimal stability in neural networks , 1987 .
[19] Thomas Hofmann,et al. Text classification in a hierarchical mixture model for small training sets , 2001, CIKM '01.
[20] Nir Friedman,et al. Bayesian Network Classifiers , 1997, Machine Learning.
[21] Saso Dzeroski,et al. Decision trees for hierarchical multi-label classification , 2008, Machine Learning.
[22] Juho Rousu,et al. Kernel-Based Learning of Hierarchical Multilabel Classification Models , 2006, J. Mach. Learn. Res..
[23] Alex Alves Freitas,et al. Multi-label Hierarchical Classification of Protein Functions with Artificial Immune Systems , 2008, BSB.
[24] M. Friedman. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .
[25] Andrea Esuli,et al. TreeBoost.MH: A Boosting Algorithm for Multi-label Hierarchical Text Categorization , 2006, SPIRE.
[26] Thomas Hofmann,et al. Exploiting Known Taxonomies in Learning Overlapping Concepts , 2007, IJCAI.
[27] Stan Matwin,et al. Hierarchical Text Categorization as a Tool of Associating Genes with Gene Ontology Codes , 2004 .
[28] Alex Alves Freitas,et al. Comparing Several Approaches for Hierarchical Classification of Proteins with Decision Trees , 2007, BSB.
[29] Claudio Gentile,et al. Incremental Algorithms for Hierarchical Classification , 2004, J. Mach. Learn. Res..
[30] Alex A. Freitas,et al. A Tutorial on Hierarchical Classification with Applications in Bioinformatics. , 2007 .
[31] Jiebo Luo,et al. Multilabel machine learning and its application to semantic scene classification , 2003, IS&T/SPIE Electronic Imaging.
[32] Ben Taskar,et al. Max-Margin Markov Networks , 2003, NIPS.
[33] Andrea Esuli,et al. Boosting multi-label hierarchical text categorization , 2008, Information Retrieval.
[34] Thomas Hofmann,et al. Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..
[35] Jiebo Luo,et al. Learning multi-label scene classification , 2004, Pattern Recognit..
[36] Alex Alves Freitas,et al. Top-Down Hierarchical Ensembles of Classifiers for Predicting G-Protein-Coupled-Receptor Functions , 2008, BSB.
[37] Alex A. Freitas,et al. A survey of hierarchical classification across different application domains , 2010, Data Mining and Knowledge Discovery.
[38] Paul N. Bennett,et al. Refined experts: improving classification in large taxonomies , 2009, SIGIR.
[39] Giorgio Valentini,et al. True Path Rule Hierarchical Ensembles , 2009, MCS.
[40] E. Webb. Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. , 1992 .
[41] M. Ashburner,et al. Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.
[42] Amanda Clare,et al. Predicting gene function in Saccharomyces cerevisiae , 2003, ECCB.
[43] William W. Cohen. Fast Effective Rule Induction , 1995, ICML.
[44] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[45] Grigorios Tsoumakas,et al. Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.
[46] Vladimir Cherkassky,et al. The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.
[47] Chris Buckley,et al. OHSUMED: an interactive retrieval evaluation and new large test collection for research , 1994, SIGIR '94.