Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community

Fungi are morphologically, ecologically, metabolically, and phylogenetically diverse. They are known to produce numerous bioactive molecules, which makes them very useful for natural products researchers in their pursuit of discovering new chemical diversity with agricultural, industrial, and pharmaceutical applications. Despite their importance in natural products chemistry, identification of fungi remains a daunting task for chemists, especially those who do not work with a trained mycologist. The purpose of this review is to update natural products researchers about the tools available for molecular identification of fungi. In particular, we discuss (1) problems of using morphology alone in the identification of fungi to the species level; (2) the three nuclear ribosomal genes most commonly used in fungal identification and the potential advantages and limitations of the ITS region, which is the official DNA barcoding marker for species-level identification of fungi; (3) how to use NCBI-BLAST search for DNA barcoding, with a cautionary note regarding its limitations; (4) the numerous curated molecular databases containing fungal sequences; (5) the various protein-coding genes used to augment or supplant ITS in species-level identification of certain fungal groups; and (6) methods used in the construction of phylogenetic trees from DNA sequences to facilitate fungal species identification. We recommend that, whenever possible, both morphology and molecular data be used for fungal identification. Our goal is that this review will provide a set of standardized procedures for the molecular identification of fungi that can be utilized by the natural products research community.

[1]  Imke Schmitt,et al.  Phylogenetic methods in natural product research. , 2009, Natural product reports.

[2]  R. Henrik Nilsson,et al.  Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. , 2012 .

[3]  R. Henrik Nilsson,et al.  Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification , 2008, Evolutionary bioinformatics online.

[4]  Justin Powlowski,et al.  A molecular phylogeny of thermophilic fungi. , 2012, Fungal biology.

[5]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[6]  R. Robinson Phytochemistry , 2018 .

[7]  Paul T Rygiewicz,et al.  Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts , 2005, BMC Microbiology.

[8]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[9]  J. Varga,et al.  Identification and nomenclature of the genus Penicillium , 2014, Studies in mycology.

[10]  K. O’Donnell,et al.  Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. , 1997, Molecular phylogenetics and evolution.

[11]  H. Friberg,et al.  New primers to amplify the fungal ITS2 region--evaluation by 454-sequencing of artificial and natural communities. , 2012, FEMS microbiology ecology.

[12]  R. Henrik Nilsson,et al.  Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences , 2011 .

[13]  David L. Hawksworth,et al.  The fungal dimension of biodiversity: magnitude, significance, and conservation , 1991 .

[14]  Kuan-Liang Liu,et al.  Accurate, Rapid Taxonomic Classification of Fungal Large-Subunit rRNA Genes , 2011, Applied and Environmental Microbiology.

[15]  K. Abd-Elsalam,et al.  Morphology: still essential in a molecular world. , 2011 .

[16]  C. Bledsoe,et al.  Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. , 2008, The New phytologist.

[17]  John P. Huelsenbeck,et al.  Bayesian Analysis of Molecular Evolution Using MrBayes , 2005 .

[18]  Andrea Galimberti,et al.  DNA barcoding: a six-question tour to improve users' awareness about the method , 2010, Briefings Bioinform..

[19]  A. Arnold,et al.  Oxaspirol B with p97 Inhibitory Activity and Other Oxaspirols from Lecythophora sp. FL1375 and FL1031, Endolichenic Fungi Inhabiting Parmotrema tinctorum and Cladonia evansii. , 2016, Journal of natural products.

[20]  Barry G. Hall,et al.  Phylogenetic Trees Made Easy: A How-To Manual , 2001 .

[21]  L. Kiss,et al.  Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi , 2012, Proceedings of the National Academy of Sciences.

[22]  Conrad L. Schoch,et al.  Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  S. Rehner,et al.  A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs , 2005, Mycologia.

[24]  Michael Weiss,et al.  Towards a unified paradigm for sequence‐based identification of fungi , 2013, Molecular ecology.

[25]  T. Giraud,et al.  Assessing the performance of single-copy genes for recovering robust phylogenies. , 2008, Systematic biology.

[26]  M. Salemi,et al.  The phylogenetic handbook : a practical approach to DNA and protein phylogeny , 2003 .

[27]  K. Voigt,et al.  Oligonucleotide primers for the universal amplification of -tubulin genes facilitate phylogenetic analyses in the regnum Fungi , 2003 .

[28]  C. Schoch,et al.  Testing the phylogenetic utility of Mcm7 in the Ascomycota , 2011 .

[29]  A. Rossman,et al.  Systematics of Plant Pathogenic Fungi: Why It Matters. , 2008, Plant disease.

[30]  K. Hyde,et al.  Genetic Analyses of the Internal Transcribed Spacer Sequences Suggest Introgression and Duplication in the Medicinal Mushroom Agaricus subrufescens , 2016, PloS one.

[31]  M. Wingfield,et al.  Identifying and naming plant-pathogenic fungi: past, present, and future. , 2015, Annual review of phytopathology.

[32]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[33]  P. Rumsby PCR protocols—A guide to methods and applications: Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White. Academic Press Inc., CA, USA, 1990. pp. xviii + 482. $39.95. ISBN 0-12-372181-40 , 1991 .

[34]  W. Gerwick,et al.  Mycoleptodiscins A and B, cytotoxic alkaloids from the endophytic fungus Mycoleptodiscus sp. F0194. , 2013, Journal of natural products.

[35]  Pierre Taberlet,et al.  ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases , 2010, BMC Microbiology.

[36]  A. Jarmusch,et al.  Polyhydroxyanthraquinones as Quorum Sensing Inhibitors from the Guttates of Penicillium restrictum and Their Analysis by Desorption Electrospray Ionization Mass Spectrometry , 2014, Journal of natural products.

[37]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[38]  P. Proksch,et al.  Fifty years of drug discovery from fungi , 2011, Fungal Diversity.

[39]  Tor Carlsen,et al.  Employing 454 amplicon pyrosequencing to reveal intragenomic divergence in the internal transcribed spacer rDNA region in fungi , 2013, Ecology and evolution.

[40]  Robert Samson,et al.  Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics , 2010, Proceedings of the National Academy of Sciences.

[41]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[42]  Bryn T. M. Dentinger,et al.  Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina) , 2011, PloS one.

[43]  Alga Zuccaro,et al.  Sequences, the environment and fungi , 2006 .

[44]  John Bissett,et al.  An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. , 2005, Fungal genetics and biology : FG & B.

[45]  Jolanta Miadlikowska,et al.  Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). , 2016, Molecular phylogenetics and evolution.

[46]  P. Bridge,et al.  The impact of molecular data in fungal systematics , 2005 .

[47]  B. Rannala,et al.  Molecular phylogenetics: principles and practice , 2012, Nature Reviews Genetics.

[48]  R. Henrik Nilsson,et al.  Taxonomic Reliability of DNA Sequences in Public Sequence Databases: A Fungal Perspective , 2006, PloS one.

[49]  David S. Hibbett,et al.  Toward Sequence-Based Classification of Fungal Species , 2013 .

[50]  J. Houbraken,et al.  Phylogeny of Penicillium and the segregation of Trichocomaceae into three families , 2011, Studies in mycology.

[51]  D. Tautz,et al.  A plea for DNA taxonomy , 2003 .

[52]  Monika Schmoll,et al.  Biology and biotechnology of Trichoderma , 2010, Applied Microbiology and Biotechnology.

[53]  M. Ryan,et al.  Fungal sources for new drug discovery , 2009 .

[54]  Michael Weiss,et al.  A higher-level phylogenetic classification of the Fungi. , 2007, Mycological research.

[55]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[56]  P. Hebert,et al.  DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. , 2007, Trends in genetics : TIG.

[57]  J. Frisvad,et al.  Taxonomy of Penicillium section Citrina , 2011, Studies in mycology.

[58]  R. Lücking,et al.  A single macrolichen constitutes hundreds of unrecognized species , 2014, Proceedings of the National Academy of Sciences.

[59]  S. Casaregola,et al.  One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes , 2015, Persoonia.

[60]  P. Hollingsworth,et al.  DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. , 2011, The New phytologist.

[61]  T. James,et al.  Archaeorhizomycetes: Unearthing an Ancient Class of Ubiquitous Soil Fungi , 2011, Science.

[62]  H. Raja,et al.  Isochromenones, isobenzofuranone, and tetrahydronaphthalenes produced by Paraphoma radicina, a fungus isolated from a freshwater habitat. , 2014, Phytochemistry.

[63]  T. Giraud,et al.  Speciation in fungi. , 2008, Fungal genetics and biology : FG & B.

[64]  M. Stadler,et al.  The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept , 2013 .

[65]  T. Volk,et al.  Molecular phylogeny and morphology reveal three new species of Cantharellus within 20 m of one another in western Wisconsin, USA , 2013, Mycologia.

[66]  T. Giraud,et al.  Insights into Penicillium roqueforti Morphological and Genetic Diversity , 2015, PloS one.

[67]  R. Henrik Nilsson,et al.  Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi , 2014, Database J. Biol. Databases Curation.

[68]  H L Houtzager,et al.  Antonie van Leeuwenhoek. , 1983, European journal of obstetrics, gynecology, and reproductive biology.

[69]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[70]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[71]  G. S. de Hoog,et al.  DNA barcoding of fungi causing infections in humans and animals. , 2016, Fungal biology.

[72]  R. Henrik Nilsson,et al.  Tasting Soil Fungal Diversity with Earth Tongues: Phylogenetic Test of SATé Alignments for Environmental ITS Data , 2011, PloS one.

[73]  O. Gascuel,et al.  SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. , 2010, Molecular biology and evolution.

[74]  C. Richter,et al.  Pyristriatins A and B: Pyridino-Cyathane Antibiotics from the Basidiomycete Cyathus cf. striatus. , 2016, Journal of natural products.

[75]  S. Faeth,et al.  Flavonolignans from Aspergillus iizukae, a fungal endophyte of milk thistle (Silybum marianum). , 2014, Journal of natural products.

[76]  C. Richter,et al.  Laxitextines A and B, Cyathane Xylosides from the Tropical Fungus Laxitextum incrustatum. , 2016, Journal of natural products.

[77]  D. Hibbett,et al.  Phylogenetic species recognition and species concepts in fungi. , 2000, Fungal genetics and biology : FG & B.

[78]  J. Stenlid,et al.  Pathogenic fungal species hybrids infecting plants. , 2002, Microbes and infection.

[79]  P. Hebert,et al.  Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[80]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[81]  R. Vilgalys,et al.  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species , 1990, Journal of bacteriology.

[82]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[83]  G. S. de Hoog,et al.  Evaluation of two novel barcodes for species recognition of opportunistic pathogens in Fusarium. , 2016, Fungal biology.

[84]  Nicholas H Oberlies,et al.  Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. , 2011, Journal of natural products.

[85]  J. Gloer,et al.  Emestrins: Anti-Cryptococcus Epipolythiodioxopiperazines from Podospora australis. , 2016, Journal of natural products.

[86]  Thomas D. Bruns,et al.  Fungal Molecular Systematics , 1991 .

[87]  J. Fankhauser,et al.  New primers for promising single-copy genes in fungal phylogenetics and systematics , 2009, Persoonia.

[88]  Scott Federhen,et al.  The NCBI Taxonomy database , 2011, Nucleic Acids Res..

[89]  S. Rehner,et al.  Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs , 1995 .

[90]  Jos Houbraken,et al.  Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case , 2007, Proceedings of the National Academy of Sciences.

[91]  D. Hibbett,et al.  The invisible dimension of fungal diversity , 2016, Science.

[92]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[93]  David S. Hibbett,et al.  Fungal systematics: is a new age of enlightenment at hand? , 2013, Nature Reviews Microbiology.

[94]  John I. Pitt,et al.  Integration of modern taxonomic methods for Penicillium and Aspergillus classification , 2000 .

[95]  C. Kuske,et al.  From Genus to Phylum: Large-Subunit and Internal Transcribed Spacer rRNA Operon Regions Show Similar Classification Accuracies Influenced by Database Composition , 2013, Applied and Environmental Microbiology.

[96]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[97]  L. Marvanová,et al.  DNA barcoding of fungi: a case study using ITS sequences for identifying aquatic hyphomycete species , 2010, Fungal Diversity.

[98]  B. Hall,et al.  Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). , 2002, American journal of botany.

[99]  Yi‐Jian Yao,et al.  Non-concerted ITS evolution in fungi, as revealed from the important medicinal fungus Ophiocordyceps sinensis. , 2013, Molecular phylogenetics and evolution.

[100]  J. Frisvad,et al.  Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium , 2011, Studies in mycology.

[101]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[102]  S. Kain,et al.  Growth of wildtype and mutant E. coli strains in minimal media for optimal production of nucleic acids for preparing labeled nucleotides , 2010, Applied Microbiology and Biotechnology.

[103]  Nils Hallenberg,et al.  Preserving accuracy in GenBank , 2008 .

[104]  M. Fisher,et al.  Fungal multilocus sequence typing--it's not just for bacteria. , 2003, Current opinion in microbiology.

[105]  David L. Erickson,et al.  DNA barcodes: methods and protocols. , 2012, Methods in molecular biology.

[106]  P. Bridge,et al.  On the unreliability of published DNA sequences. , 2003, The New phytologist.

[107]  Wolfgang Maier,et al.  Current state and perspectives of fungal DNA barcoding and rapid identification procedures , 2010, Applied Microbiology and Biotechnology.

[108]  N. Lima,et al.  Molecular Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi , 2015 .

[109]  D. Hibbett,et al.  The search for the fungal tree of life. , 2009, Trends in microbiology.

[110]  James R Hennell,et al.  Using GenBank® for genomic authentication: a tutorial. , 2012, Methods in molecular biology.

[111]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[112]  Monika Schmoll,et al.  Trichoderma: biology and applications. , 2013 .

[113]  T. Vrålstad ITS, OTUs and beyond—fungal hyperdiversity calls for supplementary solutions , 2011, Molecular ecology.

[114]  J. Varga,et al.  Phylogeny, identification and nomenclature of the genus Aspergillus , 2014, Studies in mycology.

[115]  F. Lutzoni,et al.  Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. , 2004, Molecular phylogenetics and evolution.

[116]  Kenji Matsuura,et al.  Reconstructing the early evolution of Fungi using a six-gene phylogeny , 2006, Nature.

[117]  D. Hawksworth,et al.  Managing and coping with names of pleomorphic fungi in a period of transition, , 2012, IMA fungus.

[118]  L. Lange,et al.  Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine , 2012, Springer US.

[119]  Kessy Abarenkov,et al.  Towards standardization of the description and publication of next-generation sequencing datasets of fungal communities. , 2011, The New phytologist.

[120]  R. Petersen,et al.  Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species' delimitation across basidiomycete fungi. , 2009, The New phytologist.

[121]  A. Miller,et al.  Studies in the genus Glutinoglossum , 2015, Mycologia.

[122]  L. Kohn Mechanisms of fungal speciation. , 2005, Annual review of phytopathology.

[123]  Rytas Vilgalys,et al.  Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples , 2005, Applied and Environmental Microbiology.

[124]  B. Hall,et al.  Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[125]  H. Owen,et al.  New Phytol , 2008 .

[126]  N. L. Glass,et al.  Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes , 1995, Applied and environmental microbiology.

[127]  P. Hebert,et al.  The promise of DNA barcoding for taxonomy. , 2005, Systematic biology.

[128]  Scott Federhen,et al.  Type material in the NCBI Taxonomy Database , 2014, Nucleic Acids Res..

[129]  S. Stephenson,et al.  From morphology to molecular biology: can we use sequence data to identify fungal endophytes? , 2011, Fungal Diversity.

[130]  H. Voglmayr,et al.  Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia , 2015, Studies in mycology.

[131]  P. Kirk,et al.  ITS1 versus ITS2 as DNA metabarcodes for fungi , 2013, Molecular ecology resources.

[132]  R. Gazis,et al.  Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. , 2012, Molecular phylogenetics and evolution.

[133]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[134]  C. Gradinger,et al.  Hypocrea/Trichoderma species with pachybasium-like conidiophores: teleomorphs for T. minutisporum and T. polysporum and their newly discovered relatives , 2004, Mycologia.

[135]  David Hewitt,et al.  The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. , 2009, Systematic biology.

[136]  Jesús Martín,et al.  Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a Pantropical Insecticide-Producing Endophyte , 2012, PloS one.

[137]  Irina S Druzhinina,et al.  Application of DNA Bar Codes for Screening of Industrially Important Fungi: the Haplotype of Trichoderma harzianum Sensu Stricto Indicates Superior Chitinase Formation , 2007, Applied and Environmental Microbiology.

[138]  J. Langdale,et al.  A step by step guide to phylogeny reconstruction. , 2006, The Plant journal : for cell and molecular biology.

[139]  Andrea H. Skarra System Evolution , 1994, POS.

[140]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[141]  Izabela Makalowska,et al.  FUSARIUM-ID v. 1.0: A DNA Sequence Database for Identifying Fusarium , 2004, European Journal of Plant Pathology.

[142]  T. White,et al.  Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA , 1991 .

[143]  M. Holder,et al.  Phylogeny estimation: traditional and Bayesian approaches , 2003, Nature Reviews Genetics.

[144]  Irina S Druzhinina,et al.  Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? , 2005, Journal of Zhejiang University. Science. B.

[145]  F. Lutzoni,et al.  Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. , 2003, Molecular biology and evolution.

[146]  T. Baker,et al.  DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification? , 2017, Food chemistry.

[147]  Kessy Abarenkov,et al.  Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide , 2013, The New phytologist.

[148]  Christian Downton,et al.  Statins – the heart of the matter , 2003, Nature Reviews Drug Discovery.

[149]  Andy F. S. Taylor,et al.  The UNITE database for molecular identification of fungi--recent updates and future perspectives. , 2010, The New phytologist.

[150]  I. Promputtha,et al.  Three new species of Acanthostigma (Tubeufiaceae, Dothideomycetes) from Great Smoky Mountains National Park , 2010, Mycologia.

[151]  Gianluigi Cardinali,et al.  International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database--the quality controlled standard tool for routine identification of human and animal pathogenic fungi. , 2015, Medical mycology.

[152]  D. Lindner,et al.  Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus , 2011, Mycologia.

[153]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[154]  D. Rizzo,et al.  Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. , 2007, The New phytologist.

[155]  P. Greenfield,et al.  Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences , 2016, Mycologia.

[156]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[157]  Jonathan Pevsner,et al.  Bioinformatics and functional genomics , 2003 .

[158]  John L. Spouge,et al.  Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi , 2012, Proceedings of the National Academy of Sciences.

[159]  B D Hall,et al.  The origin of red algae: implications for plastid evolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[160]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[161]  C. Day,et al.  Greensporones: Resorcylic Acid Lactones from an Aquatic Halenospora sp. , 2014, Journal of natural products.

[162]  Alfried P. Vogler,et al.  Recent advances in DNA taxonomy , 2007 .

[163]  K. Seifert Progress towards DNA barcoding of fungi , 2009, Molecular ecology resources.

[164]  Erik Kristiansson,et al.  Mining metadata from unidentified ITS sequences in GenBank: A case study in Inocybe (Basidiomycota) , 2008, BMC Evolutionary Biology.

[165]  M. Blackwell The fungi: 1, 2, 3 ... 5.1 million species? , 2011, American journal of botany.

[166]  M. Wingfield,et al.  A critique of DNA sequence analysis in the taxonomy of filamentous Ascomycetes and ascomycetous anamorphs , 1995 .

[167]  O. Gascuel,et al.  Estimating maximum likelihood phylogenies with PhyML. , 2009, Methods in molecular biology.

[168]  Ursula Eberhardt A constructive step towards selecting a DNA barcode for fungi. , 2010, The New phytologist.

[169]  H. Brückner,et al.  The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins , 2008, Mycological Progress.

[170]  D. Posada,et al.  Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. , 2004, Systematic biology.

[171]  Unraveling Trichoderma species in the attine ant environment: description of three new taxa , 2015, Antonie van Leeuwenhoek.

[172]  Jason E. Stajich,et al.  The Fungi , 2009, Current Biology.

[173]  D. Harris,et al.  Can you bank on GenBank , 2003 .

[174]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[175]  D. Newman,et al.  Natural products as sources of new drugs over the last 25 years. , 2007, Journal of natural products.

[176]  D. Hibbett,et al.  Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. , 2004, American journal of botany.

[177]  D. Hibbett,et al.  Research Coordination Networks: a phylogeny for kingdom Fungi (Deep Hypha). , 2006 .

[178]  Rainer Schuhmacher,et al.  The Peptaibiotics Database – A Comprehensive Online Resource , 2015, Chemistry & biodiversity.

[179]  P. Auvinen,et al.  Identifying wood-inhabiting fungi with 454 sequencing – what is the probability that BLAST gives the correct species? , 2010 .

[180]  Rytas Vilgalys,et al.  Taxonomic misidentification in public DNA databases. , 2003, The New phytologist.

[181]  D. Krüger,et al.  Chilenopeptins A and B, Peptaibols from the Chilean Sepedonium aff. chalcipori KSH 883. , 2016, Journal of natural products.

[182]  Kendra Baumgartner,et al.  Evolutionary consequences of putative intra-and interspecific hybridization in agaric fungi , 2013, Mycologia.

[183]  T. Bruns,et al.  Detection of plot-level changes in ectomycorrhizal communities across years in an old-growth mixed-conifer forest. , 2005, The New phytologist.