Rotation of single bacterial cells relative to the optical axis using optical tweezers.

Using a single-beam, oscillating optical tweezers, we demonstrate trapping and rotation of rod-shaped bacterial cells with respect to the optical axis. The angle of rotation, θ, is determined by the amplitude of the oscillation. It is shown that θ can be measured from the longitudinal cell intensity profiles in the corresponding phase-contrast images. The technique allows viewing the cell from different perspectives and can provide a useful tool in fluorescence microscopy for the analysis of three-dimensional subcellular structures.

[1]  I. Fishov,et al.  Shape of nonseptated Escherichia coli is asymmetric. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Renshi Sawada,et al.  Optically driven angular alignment of microcomponents made of in-plane birefringent polyimide film based on optical angular momentum transfer , 2001 .

[3]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[4]  A. Ashkin,et al.  Optical trapping and manipulation of single cells using infrared laser beams , 1987, Nature.

[5]  D. Pink,et al.  Thickness and Elasticity of Gram-Negative Murein Sacculi Measured by Atomic Force Microscopy , 1999, Journal of bacteriology.

[6]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[7]  Johannes Courtial,et al.  Optically controlled three-dimensional rotation of microscopic objects , 2003 .

[8]  Saulius Juodkazis,et al.  Fast optical switching by a laser-manipulated microdroplet of liquid crystal , 1999 .

[9]  Miles J Padgett,et al.  Rotational control within optical tweezers by use of a rotating aperture. , 2002, Optics letters.

[10]  M. Sheetz,et al.  Transcription by single molecules of RNA polymerase observed by light microscopy , 1991, Nature.

[11]  Optically induced angular alignment of birefringent micro-objects by linear polarization , 1998 .

[12]  Stephen R. Quake,et al.  The dynamics of partially extended single molecules of DNA , 1997, Nature.

[13]  O. Axner,et al.  Design for fully steerable dual-trap optical tweezers. , 1997, Applied optics.

[14]  Eiji Higurashi,et al.  Optically induced rotation of anisotropic micro‐objects fabricated by surface micromachining , 1994 .

[15]  G J Brakenhoff,et al.  Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. , 1993, Cytometry.

[16]  Renshi Sawada,et al.  Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light , 1999 .

[17]  C. Sheppard,et al.  Effects of defocus and primary spherical aberration on images of a straight edge in confocal microscopy. , 1994, Applied optics.

[18]  Hiroshi Masuhara,et al.  Multibeam laser manipulation and fixation of microparticles , 1992 .

[19]  H. Rubinsztein-Dunlop,et al.  Optical angular-momentum transfer to trapped absorbing particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[21]  A. Glindemann,et al.  SYMMETRY IN PARTIALLY COHERENT IMAGING OF SEMI-TRANSPARENT EDGES , 1991 .

[22]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[23]  H. Inaba,et al.  Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams , 1991 .

[24]  I. Fishov,et al.  Cell shape dynamics in Escherichia coli. , 2008, Biophysical journal.

[25]  F. Lanni,et al.  Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels. , 2001, Biophysical journal.

[26]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.