Damage law identification of a quasi brittle ceramic from a bending test using digital image correlation

[1]  Petri Mäkelä,et al.  Engineering fracture mechanics analysis of paper materials , 2012 .

[2]  Julien Réthoré,et al.  On the Use of NURBS Functions for Displacement Derivatives Measurement by Digital Image Correlation , 2010 .

[3]  Gary S. Schajer,et al.  Inverse Calculation of Uniaxial Stress-Strain Curves From Bending Test Data , 2009 .

[4]  Stéphane Roux,et al.  Displacement measurement technique for beam kinematics , 2009 .

[5]  C. Aneziris,et al.  Crack Healing, Reopening and Thermal Expansion Behavior of Al2TiO5 Ceramics at High Temperature , 2007 .

[6]  S. Roux,et al.  “Finite-Element” Displacement Fields Analysis from Digital Images: Application to Portevin–Le Châtelier Bands , 2006 .

[7]  Stéphane Roux,et al.  Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches , 2006 .

[8]  S. Roux,et al.  Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review , 2005, physics/0511122.

[9]  A. Tsetsekou A comparison study of tialite ceramics doped with various oxide materials and tialite–mullite composites: microstructural, thermal and mechanical properties , 2005 .

[10]  D. Munz,et al.  Nonsymmetric Deformation Behavior of Lead Zirconate Titanate Determined in Bending Tests , 2005 .

[11]  G. Fantozzi,et al.  Thermomechanical Behavior of High‐Alumina Refractory Castables with Synthetic Spinel Additions , 2004 .

[12]  M. Saâdaoui,et al.  Mechanisms of crack propagation in dry plaster , 2003 .

[13]  P. Nanni,et al.  Microstructure and thermal expansion of Al2TiO5-MgTi2O5 solid solutions obtained by reaction sintering , 2002 .

[14]  D. Munz,et al.  R-curve behaviour of 9Ce-TZP zirconia ceramics , 2002 .

[15]  D. Halm,et al.  Anisotropic damage in quasi-brittle solids: modelling, computational issues and applications , 2000 .

[16]  G. Gogotsi Mechanical behaviour of yttria- and ferric oxide-doped zirconia at different temperatures , 1998 .

[17]  Jd Jan Janssen,et al.  Determination of the elasto-plastic properties of aluminium using a mixed numerical–experimental method , 1998 .

[18]  D. Perera,et al.  Long-term thermal stability and mechanical properties of aluminium titanate at 1000–1200°C , 1998 .

[19]  Christopher S. Lynch,et al.  Mechanics of Materials and Mechanics of Materials , 1996 .

[20]  Zdenek P. Bazant,et al.  Modulus of Rupture: Size Effect due to Fracture Initiation in Boundary Layer , 1995 .

[21]  Mark Kachanov,et al.  Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts , 1992 .

[22]  Roger Morrell,et al.  Design Data for Engineering Ceramics: A Review of the Flexure Test , 1991 .

[23]  M. Swain R‐Curve Behavior and Thermal Shock Resistance of Ceramics , 1990 .

[24]  Y. Ohya,et al.  Crack Healing and Bending Strength of Aluminum Titanate Ceramics at High Temperature , 1988 .

[25]  Surendra P. Shah,et al.  Internal Cracking and Strain Softening Response of Concrete Under Uniaxial Compression , 1987 .

[26]  W. F. Ranson,et al.  Applications of digital-image-correlation techniques to experimental mechanics , 1985 .

[27]  W. F. Ranson,et al.  Determination of displacements using an improved digital correlation method , 1983, Image Vis. Comput..

[28]  R. A. Mayville,et al.  Uniaxial stress-strain curves from a bending test , 1982 .

[29]  V. Laws,et al.  Derivation of the tensile stress-strain curve from bending data , 1981 .

[30]  Daniel S. Gianola,et al.  Mechanical Characterization of Coatings Using Microbeam Bending and Digital Image Correlation Techniques , 2010 .

[31]  L. Gauckler,et al.  Excellent thermal shock resistant materials with low thermal expansion coefficients , 2008 .

[32]  P. Oikonomou,et al.  Stabilized tialite-mullite composites with low thermal expansion and high strength for catalytic converters , 2007 .

[33]  H. Awaji,et al.  Temperature dependence of mechanical properties of aluminum titanate ceramics , 2007 .

[34]  M Y He,et al.  Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. , 2006, Acta biomaterialia.

[35]  王东东,et al.  Computer Methods in Applied Mechanics and Engineering , 2004 .

[36]  †. J.J.Meléndez-Martínez,et al.  High temperature mechanical behavior of aluminium titanate–mullite composites , 2001 .

[37]  B. Latella,et al.  High‐Temperature Strength Behavior of Synroc‐C , 2001 .

[38]  Theo Fett,et al.  Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection , 1999 .

[39]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[40]  Sergio Lagomarsino,et al.  A microcrack damage model for brittle materials , 1993 .

[41]  M. Swain Quasi-brittle behaviour of ceramics and its relevance for thermal shock , 1991 .

[42]  H. J. Thomas,et al.  Aluminium titanate: a literature review. I: Microcracking phenomena , 1989 .

[43]  Y. Ohya,et al.  Crack propagation resistance of aluminium titanate ceramics , 1985 .

[44]  M. Kachanov,et al.  A microcrack model of rock inelasticity part II: Propagation of microcracks , 1982 .

[45]  A. Nádai Theory of flow and fracture of solids , 1950 .

[46]  R. Oppermann Strength of materials, part I, elementary theory and problems , 1941 .

[47]  R. S. Khurmi.pdf,et al.  Strength of Materials , 1908, Nature.