Implementation of a parallel finite-element library

This paper presents an efficient method to implement a damage law within an explicit time-integration scheme, in an open-source object-oriented finite-element framework. The hybrid object/vector design of the framework and implementation choices are detailed in the special case of non-local continuum damage constitutive laws. The computationally demanding aspect of such constitutive laws requires efficient algorithms, capable of using High Performance Computing (HPC) clusters. The performance of our approach is demonstrated on a numerically and physically challenging 3D dynamic brittle-fragmentation test case. An almost perfect scalability is achieved on parallel computations. The global dynamics and energy terms are in good agreement with classical cohesive models' predictions. HighlightsNew finite-element code based on a hybrid object/vector design.Parallel implementation showing a close to perfect scalability on integral type localization limiter algorithms.Results in agreement with theoretical predictions and comparable to other numerical approaches in terms of energies and fragments' shapes are obtained with an explicit time-integration scheme and non-local continuum damage.

[1]  Dennis E. Grady,et al.  Local inertial effects in dynamic fragmentation , 1982 .

[2]  K. T. Ramesh,et al.  Effects of material properties on the fragmentation of brittle materials , 2006 .

[3]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[4]  Magdalena Ortiz,et al.  An eigenerosion approach to brittle fracture , 2012 .

[5]  Jean-François Molinari,et al.  Characteristic fragment size distributions in dynamic fragmentation , 2006 .

[6]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[7]  S. Levy,et al.  Dynamic fragmentation of a brittle plate under biaxial loading: strength or toughness controlled? , 2012, International Journal of Fracture.

[8]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[9]  Sarah Levy,et al.  Exploring the Physics behind Dynamic Fragmentation through Parallel Simulations , 2010 .

[10]  M. B. Nooru-Mohamed Mixed-mode fracture of concrete : An experimental approach , 1992 .

[11]  François Pellegrini,et al.  Scotch and libScotch 5.0 User's Guide , 2007 .

[12]  Jean-François Molinari,et al.  A non‐local continuum damage approach to model dynamic crack branching , 2015 .

[13]  Pierre Ladevèze,et al.  A damage computational method for composite structures , 1992 .

[14]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[15]  E. Aifantis On the Microstructural Origin of Certain Inelastic Models , 1984 .

[16]  Milan Jirásek,et al.  Comparison of integral-type nonlocal plasticity models for strain-softening materials , 2003 .

[17]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[18]  K. T. Ramesh,et al.  An elastic–visco-plastic analysis of ductile expanding ring , 2006 .

[19]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[20]  Milan Jirásek,et al.  Nonlocal damage mechanics , 2007, Encyclopedia of Continuum Mechanics.

[21]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[22]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[23]  D. Rypl,et al.  Parallel explicit finite element dynamics with nonlocal constitutive models , 2001 .

[24]  L. A. Glenn,et al.  Strain‐energy effects on dynamic fragmentation , 1986 .