Optogenetic Control of Fly Optomotor Responses
暂无分享,去创建一个
Alexander Borst | Alex S. Mauss | Alex S Mauss | A. Borst | M. Joesch | Väinö Haikala | Maximilian Joesch | Väinö Haikala
[1] M. Dickinson,et al. A comparison of visual and haltere-mediated feedback in the control of body saccades in Drosophila melanogaster , 2006, Journal of Experimental Biology.
[2] J. P. Lindemann,et al. Function of a Fly Motion-Sensitive Neuron Matches Eye Movements during Free Flight , 2005, PLoS biology.
[3] Celine Mateo,et al. Motor Control by Sensory Cortex , 2010, Science.
[4] E. Yaksi,et al. Electrical Coupling between Olfactory Glomeruli , 2010, Neuron.
[5] Mark A. Frye,et al. Binocular Interactions Underlying the Classic Optomotor Responses of Flying Flies , 2012, Front. Behav. Neurosci..
[6] Klaus Hausen,et al. Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.
[7] A. Warzecha,et al. Relating Neuronal to Behavioral Performance: Variability of Optomotor Responses in the Blowfly , 2011, PloS one.
[8] Karl Georg Götz,et al. Flight control in Drosophila by visual perception of motion , 1968, Kybernetik.
[9] A. Borst,et al. Orientation tuning of motion-sensitive neurons shaped by vertical-horizontal network interactions , 2003, Journal of Comparative Physiology A.
[10] A. Borst,et al. Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.
[11] N. Strausfeld,et al. The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .
[12] A. Borst,et al. Fly motion vision. , 2010, Annual review of neuroscience.
[13] M. Dickinson,et al. Summation of visual and mechanosensory feedback in Drosophila flight control , 2004, Journal of Experimental Biology.
[14] Daniel G. Keehn,et al. Neural correlates of the optomotor response in the fly , 1967, Kybernetik.
[15] A. Borst. Drosophila's View on Insect Vision , 2009, Current Biology.
[16] H. Krapp,et al. Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.
[17] K Hausen,et al. Neural circuits mediating visual flight control in flies. I. Quantitative comparison of neural and behavioral response characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[18] A Borst,et al. Recurrent Network Interactions Underlying Flow-Field Selectivity of Visual Interneurons , 2001, The Journal of Neuroscience.
[19] M. Egelhaaf,et al. Responses of blowfly motion-sensitive neurons to reconstructed optic flow along outdoor flight paths , 2005, Journal of Comparative Physiology A.
[20] Lief E. Fenno,et al. Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.
[21] R. Wolf,et al. Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.
[22] Lewis G. Bishop,et al. On the identification of movement detectors in the fly optic lobe , 2004, Journal of comparative physiology.
[23] S. Benzer,et al. Genetic dissection of the Drosophila nervous system by means of mosaics. , 1970, Proceedings of the National Academy of Sciences of the United States of America.
[24] C. Wehrhahn,et al. Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[25] Karl Georg Götz,et al. Optomotor control of wing beat and body posture in drosophila , 1979, Biological Cybernetics.
[26] Aristides B. Arrenberg,et al. Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish , 2010, The Journal of Neuroscience.
[27] R Hengstenberg,et al. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.
[28] Martin Egelhaaf,et al. Visual afferences to flight steering muscles controlling optomotor responses of the fly , 1989, Journal of Comparative Physiology A.
[29] K. Hausen. Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.
[30] Benjamin R. Arenkiel,et al. In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.
[31] Michael B. Reiser,et al. Drosophila fly straight by fixating objects in the face of expanding optic flow , 2010, Journal of Experimental Biology.
[32] Saskia E. J. de Vries,et al. Loom-Sensitive Neurons Link Computation to Action in the Drosophila Visual System , 2012, Current Biology.
[33] A. Borst,et al. Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.
[34] A. Borst,et al. Central gating of fly optomotor response , 2010, Proceedings of the National Academy of Sciences.
[35] J. Blondeau,et al. Electrically Evoked Course Control in the Fly Calliphora Erythrocephala , 1981 .
[36] Michael B. Reiser,et al. Walking Modulates Speed Sensitivity in Drosophila Motion Vision , 2010, Current Biology.
[37] Holger G Krapp,et al. Nonlinear Integration of Visual and Haltere Inputs in Fly Neck Motor Neurons , 2009, The Journal of Neuroscience.
[38] K G Götz. [The optical transfer properties of the complex eyes of Drosophila]. , 1965, Kybernetik.
[39] Aristides B. Arrenberg,et al. Optogenetic Control of Cardiac Function , 2010, Science.
[40] F. Engert,et al. Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons , 2008, Current Biology.
[41] N. J. Strausfeld,et al. The neck motor system of the flyCalliphora erythrocephala , 2004, Journal of Comparative Physiology A.
[42] R. Hengstenberg,et al. Estimation of self-motion by optic flow processing in single visual interneurons , 1996, Nature.
[43] Karl Georg Götz,et al. Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.
[44] J. V. van Hateren,et al. Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. , 2006, Journal of neurophysiology.
[45] K. Deisseroth,et al. Bi-stable neural state switches , 2009, Nature Neuroscience.
[46] G. Rubin,et al. Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.
[47] W. Gronenberg,et al. Descending neurons supplying the neck and flight motor of diptera: Physiological and anatomical characteristics , 1990, The Journal of comparative neurology.
[48] Michael B. Reiser,et al. The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster , 2007, Journal of Experimental Biology.
[49] K. Götz. Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster , 1987 .
[50] M. Dickinson,et al. Active flight increases the gain of visual motion processing in Drosophila , 2010, Nature Neuroscience.
[51] Roland Hengstenberg,et al. Gaze control in the blowfly Calliphora: a multisensory, two-stage integration process , 1991 .
[52] B Schnell,et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. , 2010, Journal of neurophysiology.
[53] Thomas G. Oertner,et al. Temporal Control of Immediate Early Gene Induction by Light , 2009, PloS one.
[54] K. Götz,et al. Optomotor control of course and altitude in Drosophila melanogaster is correlated with distinct activities of at least three pairs of flight steering muscles. , 1996, The Journal of experimental biology.
[55] Dawnis M Chow,et al. Context-dependent olfactory enhancement of optomotor flight control in Drosophila , 2008, Journal of Experimental Biology.
[56] G. Geiger,et al. Visual orientation behaviour of flies after selective laser beam ablation of interneurones , 1981, Nature.
[57] Devanand S. Manoli,et al. Manipulation of an Innate Escape Response in Drosophila: Photoexcitation of acj6 Neurons Induces the Escape Response , 2009, PloS one.
[58] Michael H. Dickinson,et al. A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.
[59] E. Bamberg,et al. Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.