Motion: the long and short of it.

Several authors have proposed that motion is analyzed by two separate processes: short-range and long-range. We claim that the differences between short-range and long-range motion phenomena are a direct consequence of the stimuli used in the two paradigms and are not evidence for the existence of two qualitatively different motion processes. We propose that a single style of motion analysis, similar to the well known Reichardt and Marr-Ullman motion detectors, underlies all motion phenomena. Although there are different detectors of this type specialized for different visual attributes (namely first-order and second-order stimuli), they all share the same mode of operation. We review the studies of second-order motion stimuli to show that they share the basic phenomena observed for first-order stimuli. The similarity across stimulus types suggests, not parallel streams of motion extraction, one short-range and passive and the other long-range and intelligent, but a concatenation of a common mode of initial motion extraction followed by a general inference process.

[1]  J. Weitz,et al.  Central and peripheral factors in the phi phenomenon. , 1951, Journal of experimental psychology.

[2]  C. O. Roelofs,et al.  Some aspects of apparent motion , 1953 .

[3]  B. Julesz Binocular depth perception of computer-generated patterns , 1960 .

[4]  G G Haydu,et al.  Perception of Apparent Motion. , 1960, Science.

[5]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[6]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[7]  Jaakko Hintikka,et al.  On the Logic of Perception , 1969 .

[8]  S. M. Axstis PHI MOVEMENT AS A SUBTRACTION PROCESS , 1970 .

[9]  William P. Banks,et al.  Discontinuity of seen motion reduces the visual motion aftereffect , 1972 .

[10]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[11]  P. A. Kolers Aspects of motion perception , 1972 .

[12]  V. Ramachandran,et al.  Apparent movement with subjective contours. , 1973, Vision research.

[13]  C. Gross Visual Functions of Inferotemporal Cortex , 1973 .

[14]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[15]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[16]  C. WILLIAM TYLER,et al.  Depth perception in disparity gratings , 1974, Nature.

[17]  S. Anstis,et al.  Illusory reversal of visual depth and movement during changes of contrast , 1975, Vision Research.

[18]  A Pantle,et al.  A multistable movement display: evidence for two separate motion systems in human vision. , 1976, Science.

[19]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[20]  E M Brussell,et al.  Sensory information and subjective contour. , 1977, The American journal of psychology.

[21]  C. R. Michael Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. , 1978, Journal of neurophysiology.

[22]  C. R. Michael Color-sensitive complex cells in monkey striate cortex. , 1978, Journal of neurophysiology.

[23]  A. Pantle,et al.  Apparent Movement of Successively Generated Subjective Figures , 1978, Perception.

[24]  A Pantle,et al.  On the Capacity of Directionally Selective Mechanisms to Encode Different Dimensions of Moving Stimuli , 1978, Perception.

[25]  V. S. RAMACHANDRAN,et al.  Does colour provide an input to human motion perception? , 1978, Nature.

[26]  C. R. Michael Color-sensitive hypercomplex cells in monkey striate cortex. , 1979, Journal of neurophysiology.

[27]  S. Ullman The Interpretation of Visual Motion , 1979 .

[28]  M. Morgan,et al.  Conditions for motion flow in dynamic visual noise , 1980, Vision Research.

[29]  S. Anstis The perception of apparent movement. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  J. T. Petersik,et al.  The Effects of Spatial and Temporal Factors on the Perception of Stroboscopic Rotation Simulations , 1980, Perception.

[32]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[33]  Edward H. Adelson,et al.  Phenomenal coherence of moving gratings (A) , 1980 .

[34]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[35]  K. Nakayama,et al.  Psychophysical isolation of movement sensitivity by removal of familiar position cues , 1981, Vision Research.

[36]  P. Burt,et al.  Time, distance, and feature trade-offs in visual apparent motion. , 1981, Psychological review.

[37]  F. Campbell,et al.  The influence of spatial frequency and contrast on the perception of moving patterns , 1981, Vision Research.

[38]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[39]  B. Julesz,et al.  Displacement limits for spatial frequency filtered random-dot cinematograms in apparent motion , 1983, Vision Research.

[40]  K. Nakayama,et al.  Single visual neurons code opposing motion independent of direction. , 1983, Science.

[41]  D. J. Felleman,et al.  Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. , 1984, Journal of neurophysiology.

[42]  K. Nakayama,et al.  Temporal and spatial characteristics of the upper displacement limit for motion in random dots , 1984, Vision Research.

[43]  George Mather,et al.  Luminance change generates apparent movement: Implications for models of directional specificity in the human visual system , 1984, Vision Research.

[44]  J. J. Koenderink,et al.  Illusory motion in visual displays , 1984, Vision Research.

[45]  K. Prazdny Stereopsis from kinetic and flicker edges , 1984, Perception & psychophysics.

[46]  O E Favreau,et al.  Perceived velocity of moving chromatic gratings. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[47]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[48]  P. Cavanagh,et al.  Perception of Motion in Equiluminous Kinematograms , 1985, Perception.

[49]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[50]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[51]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[52]  A Pantle,et al.  Discontinuity limits for the generation of visual motion aftereffects with sine- and square-wave gratings. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[53]  O J Braddick,et al.  Temporal Properties of the Short-Range Process in Apparent Motion , 1985, Perception.

[54]  Patrick Cavanagh,et al.  Color and luminance share a common motion pathway , 1985, Vision Research.

[55]  P Cavanagh,et al.  A Moving Display Which Opposes Short-Range and Long-Range Signals , 1985, Perception.

[56]  David R. Badcock,et al.  The low level motion system has both chromatic and luminance inputs , 1985, Vision Research.

[57]  Curtis L. Baker,et al.  Eccentricity-dependent scaling of the limits for short-range apparent motion perception , 1985, Vision Research.

[58]  Anne Treisman,et al.  Features and objects in visual processing , 1986 .

[59]  B Moulden,et al.  Some Tests of the Marr-Ullman Model of Movement Detection , 1986, Perception.

[60]  Marc Green,et al.  What determines correspondence strength in apparent motion? , 1986, Vision Research.

[61]  Michael von Grünau,et al.  A motion aftereffect for long-range troboscopic apparent motion , 1986 .

[62]  M. V. von Grünau A motion aftereffect for long-range stroboscopic apparent motion. , 1986, Perception & psychophysics.

[63]  K Prazdny Three-Dimensional Structure from Long-Range Apparent Motion , 1986, Perception.

[64]  K Prazdny,et al.  What Variables Control (Long-Range) Apparent Motion? , 1986, Perception.

[65]  M Green,et al.  Correspondence matching in apparent motion: evidence for three-dimensional spatial representation. , 1986, Science.

[66]  M. Shadlen,et al.  Mechanisms of human motion perception revealed by a new cyclopean illusion. , 1986, Science.

[67]  S Ullman,et al.  Parallel and serial processes in motion detection. , 1987, Science.

[68]  J. P. Cavanagh,et al.  Reconstructing the third dimension: Interactions between color, texture, motion, binocular disparity, and shape , 1987, Comput. Vis. Graph. Image Process..

[69]  George Mather,et al.  The dependence of edge displacement thresholds on edge blur, contrast and displacement distance , 1987, Vision Research.

[70]  An asymmetry in apparent motion of kinetic objects , 1987 .

[71]  Yoshimichi Ejima,et al.  Illusory contours induced by isoluminant chromatic patterns , 1988, Vision Research.

[72]  G. Mather Temporal Properties of Apparent Motion in Subjective Figures , 1988, Perception.

[73]  G. Sperling,et al.  Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[74]  Zenon W. Pylyshyn,et al.  Computational processes in human vision : an interdisciplinary perspective , 1988 .

[75]  Z W Pylyshyn,et al.  Tracking multiple independent targets: evidence for a parallel tracking mechanism. , 1988, Spatial vision.

[76]  Norberto M. Grzywacz,et al.  A computational theory for the perception of coherent visual motion , 1988, Nature.

[77]  Curtis L. Baker,et al.  Space-time separability of direction selectivity in cat striate cortex neurons , 1988, Vision Research.

[78]  Leslie Welch,et al.  The perception of moving plaids reveals two motion-processing stages , 1989, Nature.

[79]  Mark A. Georgeson,et al.  Monocular motion sensing, binocular motion perception , 1989, Vision Research.

[80]  George Mather Early Motion Processes and the Kinetic Depth Effect , 1989 .

[81]  Patrick Cavanagh,et al.  Interattribute apparent motion , 1989, Vision Research.

[82]  A. Pantle,et al.  On the mechanism that encodes the movement of contrast variations: Velocity discrimination , 1989, Vision Research.

[83]  Nikos K. Logothetis,et al.  The responses of middle temporal (MT) neurons to isoluminant stimuli , 1989 .