New 40Ar/39Ar age of the full vector Upper Mammoth geomagnetic polarity transition recorded in the Pu’u Kualakauila volcanic sequence, Hawaii

[1]  M. Okada,et al.  A record of the lower Mammoth geomagnetic polarity reversal from a marine succession in the Boso Peninsula, central Japan , 2021, Geophysical Journal International.

[2]  T. Yamazaki,et al.  Geomagnetic Paleointensity Around 30 Ma Estimated From Afro‐Arabian Large Igneous Province , 2020, Geochemistry, Geophysics, Geosystems.

[3]  P. Camps,et al.  First archaeointensity results from Ecuador with rock magnetic analyses and 14C dates to constrain the geomagnetic field evolution in South America: Enhancing the knowledge of geomagnetic field intensity , 2020, Journal of South American Earth Sciences.

[4]  B. Jicha,et al.  Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives , 2020, Quaternary Science Reviews.

[5]  N. Mochizuki,et al.  Low absolute paleointensity during Late Miocene Noma excursion of the Earth’s magnetic field , 2019, Physics of the Earth and Planetary Interiors.

[6]  B. Jicha,et al.  Synchronizing volcanic, sedimentary, and ice core records of Earth’s last magnetic polarity reversal , 2018, Science Advances.

[7]  S. Nomade,et al.  40Ar/39Ar age of cryptochron C2r.2r-1 as recorded in a lava sequence within the Ko'olau volcano (Hawaii, USA) , 2018 .

[8]  M. Schmitz,et al.  The duration of a Yellowstone super-eruption cycle and implications for the age of the Olduvai subchron , 2017 .

[9]  P. Sobol,et al.  Re-evaluation of the ages of 40 Ar/ 39 Ar sanidine standards and supereruptions in the western U.S. using a Noblesse multi-collector mass spectrometer , 2016 .

[10]  A. Fournier,et al.  Deciphering records of geomagnetic reversals , 2016, Reviews of geophysics.

[11]  P. Clark,et al.  Identification of the short-lived Santa Rosa geomagnetic excursion in lavas on Floreana Island (Galapagos) by 40Ar/39Ar geochronology , 2016 .

[12]  E. Herrero-Bervera Spot Reading of the Absolute Paleointensity of the Geomagnetic Field Obtained from Potsherds (Age Ca. 500-430 AD) in Teotihuacan, Mexico , 2015 .

[13]  B. Singer A Quaternary geomagnetic instability time scale , 2013 .

[14]  J. Shaw,et al.  Snapshot of the Matuyama‐Brunhes reversal process recorded in 40Ar/39Ar‐dated lavas from Guadeloupe, West Indies , 2013 .

[15]  V. Courtillot,et al.  Dynamical similarity of geomagnetic field reversals , 2012, Nature.

[16]  L. Kristjánsson,et al.  New age for the Skálamælifell excursion and identification of a global geomagnetic event in the late Brunhes chron , 2011 .

[17]  H. Tsunakawa,et al.  Paleointensity variation across the Matuyama-Brunhes polarity transition: Observations from lavas at Punaruu Valley, Tahiti , 2011 .

[18]  D. Kondopoulou,et al.  A selective procedure for absolute paleointensity in lava flows , 2010 .

[19]  E. Herrero-Bervera,et al.  Testing determinations of absolute paleointensity from the 1955 and 1960 Hawaiian flows , 2009 .

[20]  R. Holme,et al.  Microwave palaeointensity results from the Matuyama–Brunhes geomagnetic field reversal , 2009 .

[21]  J. Valet,et al.  Simulations of a time-varying non-dipole field during geomagnetic reversals and excursions , 2008 .

[22]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[23]  B. Singer,et al.  Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand , 2007 .

[24]  K. Uto,et al.  40Ar/39Ar ages and palaeomagnetism of transitionally magnetized volcanic rocks in the Society Islands, French Polynesia: Raiatea excursion in the upper-Gauss Chron , 2007 .

[25]  B. Jicha,et al.  Cryptochron C2r.2r-1 recorded 2.51 Ma in the Koolau Volcano at Halawa, Oahu, Hawaii, USA: Paleomagnetic and 40Ar/39Ar evidence , 2007 .

[26]  E. Herrero-Bervera,et al.  Absolute paleointensity and reversal records from the Waianae sequence (Oahu, Hawaii, USA) , 2005 .

[27]  Xixi Zhao,et al.  Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40 Ar/ 39 Ar ages and implications , 2004 .

[28]  E. Herrero-Bervera,et al.  Some characteristics of geomagnetic reversals inferred from detailed volcanic records , 2003 .

[29]  M. Raymo,et al.  Geomagnetic excursions and paleointensities in the Matuyama Chron at Ocean Drilling Program Sites 983 and 984 (Iceland Basin) , 2002 .

[30]  D. Dunlop Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils , 2002 .

[31]  C. Laj,et al.  Geomagnetic paleointensities at Hawaii between 3.9 and 2.1 Ma: preliminary results , 2000 .

[32]  C. Laj,et al.  New K–Ar ages of shield lavas from Waianae Volcano, Oahu, Hawaiian Archipelago , 2000 .

[33]  R. Coe,et al.  Transitional field behavior during the Gilbert‐Gauss and Lower Mammoth reversals recorded in lavas from the Wai'anae volcano, O'ahu, Hawaii , 1999 .

[34]  E. Herrero-Bervera,et al.  Paleosecular variation during sequential geomagnetic reversals from Hawaii , 1999 .

[35]  C. Laj,et al.  Geomagnetic paleosecular variation at Hawaii around 3 Ma from a sequence of 107 lava flows at Kaena Point (Oahu) , 1999 .

[36]  S. Runcorn,et al.  Transition fields during geomagnetic reversals and their geodynamic significance , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[38]  K. Verosub,et al.  New data from Hadar (Ethiopia) support orbitally tuned time scale to 3.3 MA , 1993 .

[39]  F. Brown,et al.  A reappraisal of the geomagnetic polarity time scale to 4 MA using data from the Turkana Basin, East Africa , 1992 .

[40]  S. Cande,et al.  A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic , 1992 .

[41]  F. Hilgen Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary , 1991 .

[42]  M. Aitken,et al.  Determination of the intensity of the Earth's magnetic field during archaeological times: Reliability of the Thellier Technique , 1988 .

[43]  G. B. Dalrymple,et al.  Potassium-Argon Ages and Paleomagnetism of the Waianae and Koolau Volcanic Series, Oahu, Hawaii , 1973 .

[44]  I. Mcdougall,et al.  Age of the Gauss-Matuyama boundary and of the Kaena and Mammoth events , 1972 .

[45]  R. Coe Paleo-intensities of the Earth's magnetic field determined from Tertiary and Quaternary rocks , 1967 .

[46]  E. Herrero-Bervera Study of Declination, Inclination and Absolute Paleointensity of the Short-Term Geomagnetic Behavior (i.e. Cryptochron C2r.2r-1, ca. 2.46 ± 0.13 Ma) Recorded at the Type Section of Halawa Valley, Koo’lau Volcano, Oahu, Hawaii, USA , 2021, Journal of Geoscience and Environment Protection.

[47]  M. Schwartz Geomagnetic Excursions , 2020, Encyclopedia of Solid Earth Geophysics.

[48]  J. Ogg Geomagnetic Polarity Time Scale , 2020, Geologic Time Scale 2020.

[49]  G. Acton,et al.  Absolute Paleointensities from an Intact Section of Oceanic Crust Cored at ODP/IODP Site 1256 in the Equatorial Pacific , 2011 .

[50]  E. Herrero-Bervera,et al.  A Few Characteristic Features of the Geomagnetic Field During Reversals , 2011 .

[51]  J. Gee,et al.  Source of oceanic magnetic anomalies and the geomagnetic polarity time scale , 2007 .

[52]  P. Renne,et al.  A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite , 2000 .

[53]  H. Stearns Geologic map and guide of the island of Oahu, Hawaii , 1939 .