General two-stage Kalman filters

A general two-stage Kalman filter that is equivalent to, but numerically more efficient than, the standard single-stage Kalman filter is developed for general, time-varying, linear discrete-time systems. Analytical results defining the reduction in computational burdens are presented. Simulation results that validate the predicted efficiency improvements are shown as well.

[1]  Ian B. Rhodes A parallel decomposition for Kalman filters , 1990 .

[2]  Cornelius T. Leondes,et al.  1972 IFAC congress paper: Optimal minimal-order observers for discrete-time systems-A unified theory , 1972 .

[3]  R. Sea,et al.  Increasing the computational efficiency of discrete Kalman filters , 1971 .

[4]  E. Tse,et al.  Optimal minimal-order observer-estimators for discrete linear time-varying systems , 1970 .

[5]  William Dale Blair,et al.  Interacting multiple bias model algorithm with application to tracking maneuvering targets , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[6]  C. T. Leondes,et al.  1972 IFAC congress paperOptimal minimal-order observers for discrete-time systems—A unified theoryObservateurs d'ordre minimal optimal pour des systèmes à temps discrets—Une théorie unifiéeOptimale beobachter minimaler ordnung für diskretzeit-systemOптимaльныe нaблюдaтeли нaймeньшeгo пopядкa для cнc , 1972 .

[7]  E. Fogel,et al.  Reduced-order optimal state estimator for linear systems with partially noise corrupted measurement , 1980 .

[8]  Yoram Halevi,et al.  The optimal reduced-order estimator for systems with singular measurement noise , 1989 .

[9]  B. Friedland Treatment of bias in recursive filtering , 1969 .

[10]  William Dale Blair,et al.  Interacting acceleration compensation algorithm for tracking maneuvering targets , 1995 .

[11]  T. R. Rice,et al.  On the optimality of two-stage state estimation in the presence of random bias , 1993, IEEE Trans. Autom. Control..

[12]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[13]  Chien-Shu Hsieh,et al.  Optimal solution of the two-stage Kalman estimator , 1999, IEEE Trans. Autom. Control..