General two-stage Kalman filters
暂无分享,去创建一个
[1] Ian B. Rhodes. A parallel decomposition for Kalman filters , 1990 .
[2] Cornelius T. Leondes,et al. 1972 IFAC congress paper: Optimal minimal-order observers for discrete-time systems-A unified theory , 1972 .
[3] R. Sea,et al. Increasing the computational efficiency of discrete Kalman filters , 1971 .
[4] E. Tse,et al. Optimal minimal-order observer-estimators for discrete linear time-varying systems , 1970 .
[5] William Dale Blair,et al. Interacting multiple bias model algorithm with application to tracking maneuvering targets , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.
[6] C. T. Leondes,et al. 1972 IFAC congress paperOptimal minimal-order observers for discrete-time systems—A unified theoryObservateurs d'ordre minimal optimal pour des systèmes à temps discrets—Une théorie unifiéeOptimale beobachter minimaler ordnung für diskretzeit-systemOптимaльныe нaблюдaтeли нaймeньшeгo пopядкa для cнc , 1972 .
[7] E. Fogel,et al. Reduced-order optimal state estimator for linear systems with partially noise corrupted measurement , 1980 .
[8] Yoram Halevi,et al. The optimal reduced-order estimator for systems with singular measurement noise , 1989 .
[9] B. Friedland. Treatment of bias in recursive filtering , 1969 .
[10] William Dale Blair,et al. Interacting acceleration compensation algorithm for tracking maneuvering targets , 1995 .
[11] T. R. Rice,et al. On the optimality of two-stage state estimation in the presence of random bias , 1993, IEEE Trans. Autom. Control..
[12] Y. Bar-Shalom,et al. The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .
[13] Chien-Shu Hsieh,et al. Optimal solution of the two-stage Kalman estimator , 1999, IEEE Trans. Autom. Control..