Block Markov Superposition Transmission: Construction of Big Convolutional Codes From Short Codes

A construction of big convolutional codes from short codes called block Markov superposition transmission (BMST) is proposed. The BMST is very similar to superposition block Markov encoding (SBME), which has been widely used to prove multiuser coding theorems. The BMST codes can also be viewed as a class of spatially coupled codes, where the generator matrices of the involved short codes (referred to as basic codes) are coupled. The encoding process of BMST can be as fast as that of the basic code, while the decoding process can be implemented as an iterative sliding-window decoding algorithm with a tunable delay. More importantly, the performance of BMST can be simply lower bounded in terms of the transmission memory given that the performance of the short code is available. Numerical results show that: 1) the lower bounds can be matched with a moderate decoding delay in the low bit-error-rate (BER) region, implying that the iterative sliding-window decoding algorithm is near optimal; 2) BMST with repetition codes and single parity-check codes can approach the Shannon limit within 0.5 dB at the BER of 10-5 for a wide range of code rates; and 3) BMST can also be applied to nonlinear codes.

[1]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[2]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[3]  Michael Lentmaier,et al.  Laminated turbo codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[4]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[5]  Michael Lentmaier,et al.  On generalized low-density parity-check codes based on Hamming component codes , 1999, IEEE Communications Letters.

[6]  Stephen B. Wicker,et al.  Applications of Error-Control Coding , 1998, IEEE Trans. Inf. Theory.

[7]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[8]  Franco P. Preparata A Class of Optimum Nonlinear Double-Error-Correcting Codes , 1968, Inf. Control..

[9]  Pablo M. Olmos,et al.  Analyzing finite-length protograph-based spatially coupled LDPC codes , 2014, 2014 IEEE International Symposium on Information Theory.

[10]  Steven W. McLaughlin,et al.  Applications of ErrorControl Coding , 2000 .

[11]  David G. M. Mitchell,et al.  Minimum Distance and Trapping Set Analysis of Protograph-Based LDPC Convolutional Codes , 2013, IEEE Transactions on Information Theory.

[12]  John P. Robinson,et al.  An Optimum Nonlinear Code , 1967, Inf. Control..

[13]  Cyril Leung,et al.  An achievable rate region for the multiple-access channel with feedback , 1981, IEEE Trans. Inf. Theory.

[14]  Michael Lentmaier,et al.  On the minimum distance of generalized spatially coupled LDPC codes , 2013, 2013 IEEE International Symposium on Information Theory.

[15]  Li Ping,et al.  Zigzag codes and concatenated zigzag codes , 2001, IEEE Trans. Inf. Theory.

[16]  Xiao Ma,et al.  Serial Concatenation of RS Codes with Kite Codes: Performance Analysis, Iterative Decoding and Design , 2011, ArXiv.

[17]  Gerhard Fettweis,et al.  Reduced complexity window decoding schedules for coupled LDPC codes , 2012, 2012 IEEE Information Theory Workshop.

[18]  Pablo M. Olmos,et al.  Scaling behavior of convolutional LDPC ensembles over the BEC , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[19]  Rüdiger L. Urbanke,et al.  Spatially coupled ensembles universally achieve capacity under belief propagation , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[20]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[21]  Gregory S. Lauer Some optimal partial-unit-memory codes (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[22]  David Haccoun,et al.  Recursive convolutional codes for time-invariant LDPC convolutional codes , 2010, 2010 IEEE International Symposium on Information Theory.

[23]  Lin-nan Lee,et al.  Short unit-memory byte-oriented binary convolutional codes having maximal free distance (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[24]  Michael Lentmaier,et al.  Braided Block Codes , 2009, IEEE Transactions on Information Theory.

[25]  Baoming Bai,et al.  Near Shannon limit precoded concatenated zigzag codes , 2012, 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[26]  Xiao Ma,et al.  Path partitions and forward-only trellis algorithms , 2003, IEEE Trans. Inf. Theory.

[27]  Xiao Ma,et al.  A general procedure to design good codes at a target BER , 2014, 2014 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC).

[28]  F. Pollara,et al.  Serial concatenation of interleaved codes: performance analysis, design and iterative decoding , 1996, Proceedings of IEEE International Symposium on Information Theory.

[29]  P. A. Wintz,et al.  Error Free Coding , 1973 .

[30]  Peter Elias,et al.  Error-free Coding , 1954, Trans. IRE Prof. Group Inf. Theory.

[31]  Paul H. Siegel,et al.  Windowed Decoding of Spatially Coupled Codes , 2011, IEEE Transactions on Information Theory.

[32]  Xiao Ma,et al.  Obtaining extra coding gain for short codes by block Markov superposition transmission , 2013, 2013 IEEE International Symposium on Information Theory.

[33]  Ludo M. G. M. Tolhuizen,et al.  On Diamond codes , 1997, IEEE Trans. Inf. Theory.

[34]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[35]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[36]  Xiao Ma,et al.  Spatial Coupling of Generator Matrices: A General Approach to Design Good Codes at a Target BER , 2014, IEEE Transactions on Communications.

[37]  Michael Lentmaier,et al.  Braided Convolutional Codes: A New Class of Turbo-Like Codes , 2010, IEEE Transactions on Information Theory.

[38]  Shu Lin,et al.  Construction of Quasi-Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach , 2007, IEEE Transactions on Information Theory.

[39]  Jun-Fu Cheng Hyperimposed convolutional codes , 1996, Proceedings of ICC/SUPERCOMM '96 - International Conference on Communications.

[40]  Pablo M. Olmos,et al.  A closed-form scaling law for convolutional LDPC codes over the BEC , 2013, 2013 IEEE Information Theory Workshop (ITW).

[41]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[42]  Robert M. Gray,et al.  Coding for noisy channels , 2011 .

[43]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[44]  S. Dolinar,et al.  Weight distributions for turbo codes using random and nonrandom permutations , 1995 .

[45]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[46]  Frans M. J. Willems,et al.  The discrete memoryless multiple-access channel with cribbing encoders , 1985, IEEE Trans. Inf. Theory.

[47]  Sergio Benedetto,et al.  Unveiling turbo codes: some results on parallel concatenated coding schemes , 1996, IEEE Trans. Inf. Theory.

[48]  Dariush Divsalar,et al.  Coding theorems for 'turbo-like' codes , 1998 .

[49]  G. David Forney,et al.  Concatenated codes , 2009, Scholarpedia.

[50]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[51]  Ali Emre Pusane,et al.  Deriving Good LDPC Convolutional Codes from LDPC Block Codes , 2010, IEEE Transactions on Information Theory.

[52]  Haiqiang Chen,et al.  Low Complexity X-EMS Algorithms for Nonbinary LDPC Codes , 2012, IEEE Transactions on Communications.

[53]  Te Sun Han,et al.  A general coding scheme for the two-way channel , 1984, IEEE Trans. Inf. Theory.

[54]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[55]  Dariush Divsalar,et al.  Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.

[56]  Xiao Ma,et al.  A New Class of Multiple-Rate Codes Based on Block Markov Superposition Transmission , 2014, IEEE Transactions on Signal Processing.

[57]  Oliver M. Collins The subtleties and intricacies of building a constraint length 15 convolutional decoder , 1992, IEEE Trans. Commun..

[58]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[59]  A. Sridharan Broadcast Channels , 2022 .

[60]  Xiao Ma,et al.  Block Markov Superposition Transmission with Bit-Interleaved Coded Modulation , 2014, IEEE Communications Letters.

[61]  Mario Blaum,et al.  Cross parity check convolutional codes , 1989, IEEE Trans. Inf. Theory.

[62]  Paul H. Siegel,et al.  Windowed Decoding of Protograph-Based LDPC Convolutional Codes Over Erasure Channels , 2010, IEEE Transactions on Information Theory.

[63]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[64]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[65]  Stephen G. Wilson,et al.  Stream-oriented turbo codes , 2001, IEEE Trans. Inf. Theory.

[66]  Li Ping,et al.  Coded modulation using superimposed binary codes , 2004, IEEE Transactions on Information Theory.

[67]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[68]  Vladimir M. Blinovsky,et al.  List decoding , 1992, Discret. Math..

[69]  Xiao Ma,et al.  New Techniques for Upper-Bounding the ML Decoding Performance of Binary Linear Codes , 2011, IEEE Transactions on Communications.

[70]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[71]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.