Image Evaluation Methods for PIV

This chapter covers extensively the methods used to determine the flow velocity starting from the recordings of particle images. After an introduction to the concept of spatial correlation and Fourier methods, an overview of the different PIV evaluation methods is given. Ample discussions devoted to explain the details of the discrete spatial correlation operator in use for PIV interrogation. The main features associated to the FFT implementation (aliasing, displacement range limit and bias error) are discussed. Methods that enhance the correlation signal either in terms of robustness or of accuracy are surveyed. The discussion of ensemble correlation techniques and the use of single-pixel correlation in micro-PIV and macroscopic experiments is a novel addition to the present edition. A detailed description is given of the standard image interrogation based on multigrid image deformation, where the advantages in the treatment of complex flows are discussed as well as the issues in terms of resolution and numerical stability. Another new feature introduced in this chapter is the discussion of the recent developments of algorithms in use for PIV time series as obtained by high-speed PIV systems. Namely, the algorithms to perform Multi frame-PIV, Pyramid Correlation and Fluid Trajectory Correlation and Ensemble Evaluation are treated. Furthermore, a new section that discusses the methods used for individual particle tracking is introduced. The discussion describes the working principles of PTV for planar PIV. The potential of the latter techniques in terms of spatial resolution as well as their limits of applicability in terms of image density are presented.

[1]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[2]  Christian Willert,et al.  Adaptive PIV processing based on ensemble correlation , 2008 .

[3]  C. Schnörr,et al.  Optical Stokes flow estimation: an imaging-based control approach , 2006 .

[4]  S. Wereley,et al.  Advanced Algorithms for Microscale Particle Image Velocimetry , 2002 .

[5]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[6]  J. Soria An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique , 1996 .

[7]  J. Westerweel Digital particle image velocimetry: theory and application , 1993 .

[8]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[9]  Raf Theunissen,et al.  On improvement of PIV image interrogation near stationary interfaces , 2008 .

[10]  Holger Nobach,et al.  Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry , 2005 .

[11]  Armin Gruen,et al.  Particle tracking velocimetry in three-dimensional flows , 1993, Experiments in Fluids.

[12]  S. Monismith,et al.  A hybrid digital particle tracking velocimetry technique , 1997 .

[13]  M. Virant,et al.  Establishment of a Videogrammetric PTV System , 1996 .

[14]  Carl D. Meinhart,et al.  Second-order accurate particle image velocimetry , 2001 .

[15]  S. Wereley,et al.  A PIV Algorithm for Estimating Time-Averaged Velocity Fields , 2000 .

[16]  Leonid P. Yaroslavsky,et al.  Digital Picture Processing: An Introduction , 1985 .

[17]  Timo Kohlberger,et al.  Variational optical flow estimation for particle image velocimetry , 2005 .

[18]  T. Dracos,et al.  Particle Tracking Velocimetry (PTV) , 1996 .

[19]  Richard D. Keane,et al.  Theory of cross-correlation analysis of PIV images , 1992 .

[20]  W. Merzkirch,et al.  A method of tracking ensembles of particle images , 1996 .

[21]  H. E. Fiedler,et al.  Limitation and improvement of PIV , 1993 .

[22]  Fulvio Scarano,et al.  Theory of non-isotropic spatial resolution in PIV , 2003 .

[23]  Christian Willert,et al.  Stereoscopic Digital Particle Image Velocimetry for Application in Wind Tunnel Flows , 1997 .

[24]  J. Westerweel,et al.  Single-pixel resolution ensemble correlation for micro-PIV applications , 2004 .

[25]  J. Goodman Introduction to Fourier optics , 1969 .

[26]  George O. Reynolds,et al.  The New Physical Optics Notebook , 1989 .

[27]  T. Roesgen,et al.  Optimal subpixel interpolation in particle image velocimetry , 2003 .

[28]  N. Malik,et al.  Particle tracking velocimetry in three-dimensional flows , 1993 .

[29]  W. Merzkirch,et al.  Generating arbitrarily sized interrogation windows for correlation-based analysis of particle image velocimetry recordings , 1998 .

[30]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[31]  Laurent David,et al.  Single pixel resolution correlation applied to unsteady flow measurements , 2004 .

[32]  Francisco Pereira,et al.  Two-frame 3D particle tracking , 2006 .

[33]  Leonid P. Yaroslavsky,et al.  Signal sinc-interpolation: a fast computer algorithm , 1996 .

[34]  Michel Stanislas,et al.  Main results of the Second International PIV Challenge , 2005 .

[35]  Christian J. Kähler,et al.  Fundamentals of multiframe particle image velocimetry (PIV) , 2007 .

[36]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[37]  Christian J. Kähler,et al.  Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV , 2006 .

[38]  Tommaso Astarita,et al.  Analysis of velocity interpolation schemes for image deformation methods in PIV , 2008 .

[39]  Jürgen Kompenhans,et al.  Advanced evaluation algorithms for standard and dual plane particle image velocimetry. , 1998 .

[40]  Ryan J. Lowe,et al.  Intensity Capping: a simple method to improve cross-correlation PIV results , 2007 .

[41]  Yann Guezennec,et al.  Algorithms for fully automated three-dimensional particle tracking velocimetry , 1994 .

[42]  Ferry Schrijer,et al.  Effect of predictor–corrector filtering on the stability and spatial resolution of iterative PIV interrogation , 2008 .

[43]  Paul E. Dimotakis,et al.  Image correlation velocimetry , 1995 .

[44]  Michel L. Riethmuller,et al.  Extension of PIV to Super Resolution using PTV , 2001 .

[45]  A. Fincham,et al.  Advanced optimization of correlation imaging velocimetry algorithms , 2000 .

[46]  M. Wernet Symmetric phase only filtering: a new paradigm for DPIV data processing , 2005 .

[47]  A. Papoulis Signal Analysis , 1977 .

[48]  Javier Jiménez,et al.  On the performance of particle tracking , 1987, Journal of Fluid Mechanics.

[49]  J. Nogueira,et al.  Identification of a new source of peak locking, analysis and its removal in conventional and super-resolution PIV techniques , 2001 .

[50]  K. Hinsch,et al.  Turbulence level measurement by speckle velocimetry. , 1986, Applied optics.

[51]  Ian Grant,et al.  Method for the efficient incoherent analysis of particle image velocimetry images , 1989 .

[52]  Hans-Gerd Maas Digitale Photogrammetrie in der dreidimensionalen Strömungsmesstechnik , 1992 .

[53]  Christian Willert,et al.  Planar flow field measurements in atmospheric and pressurized combustion chambers , 2002 .

[54]  D. Hart,et al.  PIV error correction , 2000 .

[55]  F. Scarano Iterative image deformation methods in PIV , 2002 .

[56]  W. Schmidl,et al.  New tracking algorithm for particle image velocimetry , 1995 .

[57]  Michael Unser,et al.  Splines: a perfect fit for signal and image processing , 1999, IEEE Signal Process. Mag..

[58]  Kazuo Ohmi,et al.  Particle-tracking velocimetry with new algorithms , 2000 .

[59]  R. Adrian,et al.  A Kalman tracker for super-resolution PIV , 2000 .

[60]  Fulvio Scarano,et al.  Advances in iterative multigrid PIV image processing , 2000 .

[61]  Tommaso Astarita,et al.  Analysis of interpolation schemes for image deformation methods in PIV , 2005 .

[62]  C. Willert,et al.  Digital particle image velocimetry , 1991 .

[63]  D. Beebe,et al.  A particle image velocimetry system for microfluidics , 1998 .

[64]  G. Quénot,et al.  Particle image velocimetry with optical flow , 1998 .

[65]  Shigeru Nishio,et al.  Standard images for particle-image velocimetry , 2000 .

[66]  D. Hart Super-resolution PIV by recursive local-correlation , 2000 .

[67]  Richard D. Keane,et al.  Optimization of particle image velocimeters. I, Double pulsed systems , 1990 .

[68]  Michel Stanislas,et al.  REVIEW ARTICLE: Main results of the First International PIV Challenge , 2003 .

[69]  Christian Willert,et al.  Particle Tracing: Revisited , 1989 .

[70]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[71]  E. O. Brigham,et al.  The Fast Fourier Transform , 1967, IEEE Transactions on Systems, Man, and Cybernetics.

[72]  Fulvio Scarano,et al.  Iterative multigrid approach in PIV image processing with discrete window offset , 1999 .

[73]  Michel Stanislas,et al.  Main results of the third international PIV Challenge , 2008 .

[74]  R.J.M. Bastiaans,et al.  The performance of a new PTV algorithm applied in super-resolution PIV , 2002 .

[75]  M. Unser,et al.  Interpolation revisited [medical images application] , 2000, IEEE Transactions on Medical Imaging.

[76]  L. Lourenco,et al.  On the accuracy of velocity and vorticity measurements with PIV , 1995 .

[77]  Richard D. Keane,et al.  Super-resolution particle imaging velocimetry , 1995 .

[78]  J. Westerweel,et al.  The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings , 1997 .

[79]  Leonid P. Yaroslavsky,et al.  Digital Picture Processing , 1985 .

[80]  T. Dracos,et al.  Particle Tracking in Three-Dimensional Space , 1996 .

[81]  Antonio Cenedese,et al.  PIV for Lagrangian Scale Evaluation in a Convective Boundary Layer , 1992 .