Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode

We demonstrate multilevel data storage in organic ferroelectric resistive memory diodes consisting of a phase-separated blend of P(VDF-TrFE) and a semiconducting polymer. The dynamic behaviour of the organic ferroelectric memory diode can be described in terms of the inhomogeneous field mechanism (IFM) model where the ferroelectric components are regarded as an assembly of randomly distributed regions with independent polarisation kinetics governed by a time-dependent local field. This allows us to write and non-destructively read stable multilevel polarisation states in the organic memory diode using controlled programming pulses. The resulting 2-bit data storage per memory element doubles the storage density of the organic ferroelectric resistive memory diode without increasing its technological complexity, thus reducing the cost per bit.

[1]  G. Gelinck,et al.  Multi-bit organic ferroelectric memory , 2013 .

[2]  Gerwin H. Gelinck,et al.  High-performance solution-processed polymer ferroelectric field-effect transistors , 2005 .

[3]  G. Gelinck,et al.  Liquid phase demixing in ferroelectric/semiconducting polymer blends: An experimental and theoretical study , 2011 .

[4]  Zheng-Hong Lu,et al.  Universal energy-level alignment of molecules on metal oxides. , 2011, Nature materials.

[5]  박철민 Flexible Non-Volatile Ferroelectric Polymer Memory with Gate-Controlled Multilevel Operation , 2013 .

[6]  A. J. Lovinger Ferroelectric Polymers , 1983, Science.

[7]  H. Sirringhaus,et al.  Efficient Top‐Gate, Ambipolar, Light‐Emitting Field‐Effect Transistors Based on a Green‐Light‐Emitting Polyfluorene , 2006 .

[8]  Koon Gee Neoh,et al.  Polymer electronic memories: Materials, devices and mechanisms , 2008 .

[9]  Kimoon Lee,et al.  High‐Mobility Nonvolatile Memory Thin‐Film Transistors with a Ferroelectric Polymer Interfacing ZnO and Pentacene Channels , 2009 .

[10]  H. Sirringhaus,et al.  Inside Front Cover: Efficient Top‐Gate, Ambipolar, Light‐Emitting Field‐Effect Transistors Based on a Green‐Light‐Emitting Polyfluorene (Adv. Mater. 20/2006) , 2006 .

[11]  P. Blom,et al.  An Organic Field‐Effect Transistor with Programmable Polarity , 2005 .

[12]  T. Furukawa,et al.  Factors governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[13]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advances in Materials.

[14]  Yoshinori Tokura,et al.  Organic ferroelectrics. , 2008, Nature materials.

[15]  Tse Nga Ng,et al.  Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory , 2012, Scientific Reports.

[16]  T. Granzow,et al.  Dynamics of polarization reversal in virgin and fatigued ferroelectric ceramics by inhomogeneous field mechanism , 2010 .

[17]  Tae Won Noh,et al.  Multilevel Data Storage Memory Using Deterministic Polarization Control , 2012, Advanced materials.

[18]  Yong-Young Noh,et al.  High‐Performance Top‐Gated Organic Field‐Effect Transistor Memory using Electrets for Monolithic Printed Flexible NAND Flash Memory , 2012 .

[19]  G. Gelinck,et al.  Nanoscale Organic Ferroelectric Resistive Switches , 2014 .

[20]  Michael J. Hoffmann,et al.  Universal Polarization Switching Behavior of Disordered Ferroelectrics , 2012 .

[21]  G. Gelinck,et al.  Crossbar arrays of nonvolatile, rewritable polymer ferroelectric diode memories on plastic substrates , 2014 .

[22]  Kamal Asadi,et al.  Organic non-volatile memories from ferroelectric phase-separated blends. , 2008, Nature materials.

[23]  P. Blom,et al.  The operational mechanism of ferroelectric-driven organic resistive switches , 2012 .

[24]  P. Blom,et al.  Spinodal Decomposition of Blends of Semiconducting and Ferroelectric Polymers , 2011 .

[25]  P. Blom,et al.  Organic Nonvolatile Memory Devices Based on Ferroelectricity , 2010, Advanced materials.

[26]  Jerzy Kanicki,et al.  High performance organic polymer light-emitting heterostructure devices , 1999 .

[27]  P. Blom,et al.  Tunable Injection Barrier in Organic Resistive Switches Based on Phase‐Separated Ferroelectric–Semiconductor Blends , 2009 .

[28]  W. J. Merz,et al.  Domain Formation and Domain Wall Motions in Ferroelectric BaTiO 3 Single Crystals , 1954 .

[29]  F. Longo,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009 .

[30]  Dae-Eun Kim,et al.  Non-volatile organic memory with sub-millimetre bending radius , 2014, Nature Communications.

[31]  Husam N. Alshareef,et al.  High‐Performance Ferroelectric Memory Based on Phase‐Separated Films of Polymer Blends , 2014 .

[32]  Mengyuan Li,et al.  Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage , 2010 .

[33]  S. Yoon,et al.  Non‐volatile Ferroelectric Poly(vinylidene fluoride‐co‐trifluoroethylene) Memory Based on a Single‐Crystalline Tri‐isopropylsilylethynyl Pentacene Field‐Effect Transistor , 2009 .

[34]  J. Legrand Structure and ferroelectric properties of P(VDF-TrFE) copolymers , 1989 .

[35]  Youn Jung Park,et al.  Shear-Induced Ordering of Ferroelectric Crystals in Spin-Coated Thin Poly(vinylidene fluoride-co-trifluoroethylene) Films , 2009 .

[36]  J. J. Gallardo,et al.  An experimental and theoretical study , 2015 .

[37]  Yudin,et al.  Intrinsic ferroelectric coercive field , 2000, Physical review letters.

[38]  Richard H. Friend,et al.  General observation of n-type field-effect behaviour in organic semiconductors , 2005, Nature.