Field‐Aligned and Lattice‐Guided Tetrahedral Meshing

We present a particle‐based approach to generate field‐aligned tetrahedral meshes, guided by cubic lattices, including BCC and FCC lattices. Given a volumetric domain with an input frame field and a user‐specified edge length for the cubic lattice, we optimize a set of particles to form the desired lattice pattern. A Gaussian Hole Kernel associated with each particle is constructed. Minimizing the sum of kernels of all particles encourages the particles to form a desired layout, e.g., field‐aligned BCC and FCC. The resulting set of particles can be connected to yield a high quality field‐aligned tetrahedral mesh. As demonstrated by experiments and comparisons, the field‐aligned and lattice‐guided approach can produce higher quality isotropic and anisotropic tetrahedral meshes than state‐of‐the‐art meshing methods.

[1]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[2]  Ross T. Whitaker,et al.  Robust particle systems for curvature dependent sampling of implicit surfaces , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[3]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH Courses.

[4]  Mark Yerry,et al.  A Modified Quadtree Approach To Finite Element Mesh Generation , 1983, IEEE Computer Graphics and Applications.

[5]  Mark S. Shephard,et al.  Automatic three-dimensional mesh generation by the finite octree technique , 1984 .

[6]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[7]  Olga Sorkine-Hornung,et al.  Frame fields , 2014, ACM Trans. Graph..

[8]  Bruno Lévy,et al.  Hexahedral-dominant meshing , 2016, TOGS.

[9]  Scott A. Mitchell,et al.  Quality mesh generation in three dimensions , 1992, SCG '92.

[10]  J. Shewchuk Two Discrete Optimization Algorithms for the Topological Improvement of Tetrahedral Meshes , 2002 .

[11]  Ronald Fedkiw,et al.  Tetrahedral Mesh Generation for Deformable Bodies , 2003 .

[12]  Kenji Shimada,et al.  High Quality Anisotropic Tetrahedral Mesh Generation Via Ellipsoidal Bubble Packing , 2000, IMR.

[13]  Sehoon Ha,et al.  Iterative Training of Dynamic Skills Inspired by Human Coaching Techniques , 2014, ACM Trans. Graph..

[14]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[15]  Mariette Yvinec,et al.  Anisotropic Delaunay Meshes of Surfaces , 2015, TOGS.

[16]  Michael Holst,et al.  Efficient mesh optimization schemes based on Optimal Delaunay Triangulations , 2011 .

[17]  Bruno Lévy,et al.  Particle-based anisotropic surface meshing , 2013, ACM Trans. Graph..

[18]  Dong-Ming Yan,et al.  Field‐Aligned Isotropic Surface Remeshing , 2018, Comput. Graph. Forum.

[19]  Robert Bridson,et al.  Isosurface stuffing improved: acute lattices and feature matching , 2013, SIGGRAPH '13.

[20]  M. Ortiz,et al.  Tetrahedral mesh generation based on node insertion in crystal lattice arrangements and advancing-front-Delaunay triangulation , 2000 .

[21]  Jonathan Richard Shewchuk,et al.  Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation , 2003, SCG '03.

[22]  Hujun Bao,et al.  Controllable highly regular triangulation , 2011, Science China Information Sciences.

[23]  Jonathan Richard Shewchuk,et al.  Aggressive Tetrahedral Mesh Improvement , 2007, IMR.

[24]  Pierre Alliez,et al.  Perturbing Slivers in 3D Delaunay Meshes , 2009, IMR.

[25]  J. Shewchuk,et al.  Isosurface stuffing: fast tetrahedral meshes with good dihedral angles , 2007, SIGGRAPH 2007.

[26]  Q. Du,et al.  The optimal centroidal Voronoi tessellations and the gersho's conjecture in the three-dimensional space , 2005 .

[27]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[28]  Christopher Wojtan,et al.  Highly adaptive liquid simulations on tetrahedral meshes , 2013, ACM Trans. Graph..

[29]  Peter Hansbo,et al.  On advancing front mesh generation in three dimensions , 1995 .

[30]  Bruno Lévy,et al.  Hexahedral-dominant meshing , 2017, ACM Trans. Graph..

[31]  Chenglei Yang,et al.  On centroidal voronoi tessellation—energy smoothness and fast computation , 2009, TOGS.

[32]  Luiz Velho,et al.  Implicit manifolds, triangulations and dynamics , 1997, Neural Parallel Sci. Comput..

[33]  L. Paul Chew,et al.  Guaranteed-quality Delaunay meshing in 3D (short version) , 1997, SCG '97.

[34]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[35]  Bruno Lévy,et al.  Practical 3D frame field generation , 2016, ACM Trans. Graph..

[36]  Wenping Wang,et al.  Sliver-suppressing tetrahedral mesh optimization with gradient-based shape matching energy , 2017, Comput. Aided Geom. Des..

[37]  Desheng Wang,et al.  Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations , 2003 .

[38]  Mariette Yvinec,et al.  CGALmesh , 2015, ACM Trans. Math. Softw..

[39]  Qiang Du,et al.  Anisotropic Centroidal Voronoi Tessellations and Their Applications , 2005, SIAM J. Sci. Comput..

[40]  Ligang Liu,et al.  Revisiting Optimal Delaunay Triangulation for 3D Graded Mesh Generation , 2014, SIAM J. Sci. Comput..

[41]  Mark S. Shephard,et al.  Automatic three‐dimensional mesh generation by the finite octree technique , 1984 .

[42]  Tamal K. Dey,et al.  Delaunay Mesh Generation , 2012, Chapman and Hall / CRC computer and information science series.

[43]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[44]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[45]  Baining Guo,et al.  Anisotropic simplicial meshing using local convex functions , 2014, ACM Trans. Graph..

[46]  Hujun Bao,et al.  Boundary aligned smooth 3D cross-frame field , 2011, ACM Trans. Graph..

[47]  S. Sutharshana,et al.  Automatic three-dimensional mesh generation by the modified-octree technique: Yerry M A and Shepard, M SInt. J. Numer. Methods Eng. Vol 20 (1984) pp 1965–1990 , 1985 .

[48]  N. Sloane,et al.  The Optimal Lattice Quantizer in Three Dimensions , 1983 .

[49]  Wenzel Jakob,et al.  Robust hex-dominant mesh generation using field-guided polyhedral agglomeration , 2017, ACM Trans. Graph..

[50]  M. Yvinec,et al.  Variational tetrahedral meshing , 2005, SIGGRAPH 2005.

[51]  Eugene Zhang,et al.  Hexagonal Global Parameterization of Arbitrary Surfaces , 2010, IEEE Transactions on Visualization and Computer Graphics.