(-)-Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels.

Current therapies for common types of cancer such as renal cell cancer are often ineffective and unspecific, and novel pharmacological targets and approaches are in high demand. Here we show the unexpected possibility for the rapid and selective killing of renal cancer cells through activation of calcium-permeable nonselective transient receptor potential canonical (TRPC) calcium channels by the sesquiterpene (-)-englerin A. This compound was found to be a highly efficient, fast-acting, potent, selective, and direct stimulator of TRPC4 and TRPC5 channels. TRPC4/5 activation through a high-affinity extracellular (-)-englerin A binding site may open up novel opportunities for drug discovery aimed at renal cancer.

[1]  V. Haase,et al.  Renal cancer: oxygen meets metabolism. , 2012, Experimental cell research.

[2]  B. Nilius,et al.  TRPs in Our Senses , 2008, Current Biology.

[3]  P. Metz,et al.  A short enantioselective total synthesis of (-)-englerin A. , 2013, Angewandte Chemie.

[4]  Herbert Waldmann,et al.  Biology-oriented synthesis: harnessing the power of evolution. , 2014, Journal of the American Chemical Society.

[5]  Carsten Strohmann,et al.  Total synthesis and absolute configuration of the guaiane sesquiterpene englerin A. , 2009, Angewandte Chemie.

[6]  David J Beech,et al.  Characteristics of transient receptor potential canonical calcium-permeable channels and their relevance to vascular physiology and disease. , 2013, Circulation journal : official journal of the Japanese Circulation Society.

[7]  W. Linehan,et al.  Englerin A stimulates PKCθ to inhibit insulin signaling and to simultaneously activate HSF1: pharmacologically induced synthetic lethality. , 2013, Cancer cell.

[8]  R. Williams,et al.  Renal cancer-selective Englerin A induces multiple mechanisms of cell death and autophagy , 2013, Journal of experimental & clinical cancer research : CR.

[9]  William J. Chain,et al.  A brief synthesis of (-)-englerin A. , 2011, Journal of the American Chemical Society.

[10]  J. Ramos,et al.  Englerin A Selectively Induces Necrosis in Human Renal Cancer Cells , 2012, PloS one.

[11]  F. Koehn,et al.  The evolving role of natural products in drug discovery , 2005, Nature Reviews Drug Discovery.

[12]  P. Emery,et al.  TRPC channel activation by extracellular thioredoxin , 2008, Nature.

[13]  K. Gustafson,et al.  Englerin A, a selective inhibitor of renal cancer cell growth, from Phyllanthus engleri. , 2009, Organic letters.

[14]  K. Nicolaou,et al.  Total synthesis of englerin A. , 2010, Journal of the American Chemical Society.

[15]  S. Danishefsky,et al.  Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. , 2006, The Journal of organic chemistry.

[16]  T. Bíró,et al.  Transient receptor potential channels as therapeutic targets , 2011, Nature Reviews Drug Discovery.

[17]  S. Wetzel,et al.  Biologie‐orientierte Synthese (BIOS) , 2011 .

[18]  Cheng Zhang,et al.  Nature's contribution to today's pharmacopeia , 2014, Nature Biotechnology.

[19]  David J Newman,et al.  Natural products as sources of new drugs over the 30 years from 1981 to 2010. , 2012, Journal of natural products.

[20]  P. Esper Concepts in advanced renal carcinoma. , 2012, Seminars in oncology nursing.

[21]  C. Tseng,et al.  Chemical synthesis of the englerins. , 2012, Chemistry, an Asian journal.

[22]  D. Clapham,et al.  TRPC1 and TRPC5 Form a Novel Cation Channel in Mammalian Brain , 2001, Neuron.

[23]  Stefan Wetzel,et al.  Biology-oriented synthesis. , 2011, Angewandte Chemie.

[24]  David J Beech,et al.  In pursuit of small molecule chemistry for calcium‐permeable non‐selective TRPC channels – mirage or pot of gold? , 2013, British journal of pharmacology.

[25]  P. Metz,et al.  Eine kurze enantioselektive Totalsynthese von (−)‐Englerin A , 2013 .

[26]  L. Birnbaumer,et al.  Physiology and pathophysiology of canonical transient receptor potential channels , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[27]  Herbert Waldmann,et al.  Bioactivity-guided navigation of chemical space. , 2010, Accounts of chemical research.

[28]  Rosamonde E Banks,et al.  Renal cancer biomarkers: the promise of personalized care , 2012, BMC Medicine.

[29]  Jing Xu,et al.  Enantioselective formal synthesis of (-)-englerin A via a Rh-catalyzed [4 + 3] cycloaddition reaction. , 2010, Organic letters.

[30]  A. Beck,et al.  Conserved Gating Elements in TRPC4 and TRPC5 Channels* , 2013, The Journal of Biological Chemistry.

[31]  N. Smith,et al.  Transient potential receptor channel 4 controls thrombospondin‐1 secretion and angiogenesis in renal cell carcinoma , 2007, The FEBS journal.

[32]  Qianghui Zhou,et al.  Asymmetric, protecting-group-free total synthesis of (-)-englerin A. , 2010, Angewandte Chemie.

[33]  S. Wetzel,et al.  Biology-inspired synthesis of compound libraries , 2008, Cellular and Molecular Life Sciences.

[34]  Melissa R. Miller,et al.  Identification of ML204, a Novel Potent Antagonist That Selectively Modulates Native TRPC4/C5 Ion Channels* , 2011, The Journal of Biological Chemistry.

[35]  R. Fröhlich,et al.  Totalsynthese und absolute Konfiguration des Guaian-Sesquiterpens Englerin A† , 2009 .

[36]  L. Kiemeney,et al.  Corrigendum to "The Epidemiology of Renal Cell Carcinoma" [Eur Urol 2011;60:615-21]. , 2011, European urology.

[37]  I. So,et al.  Isoform- and receptor-specific channel property of canonical transient receptor potential (TRPC)1/4 channels , 2013, Pflügers Archiv - European Journal of Physiology.

[38]  T. Gudermann,et al.  Receptor-mediated Regulation of the Nonselective Cation Channels TRPC4 and TRPC5* , 2000, The Journal of Biological Chemistry.

[39]  R. Fröhlich,et al.  Total synthesis and biological evaluation of (-)-englerin A and B: synthesis of analogues with improved activity profile. , 2011, Angewandte Chemie.

[40]  Kian Molawi,et al.  Enantioselective synthesis of (-)-englerins A and B. , 2010, Angewandte Chemie.