The Maximal Exceptional Graphs

A graph is said to be exceptional if it is connected, has least eigenvalue greater than or equal to -2, and is not a generalized line graph. Such graphs are known to be representable in the exceptional root system E8. We determine the maximal exceptional graphs by a computer search using the star complement technique, and then show how they can be found by theoretical considerations using a representation of E8 in R8. There are exactly 473 maximal exceptional graphs.

[1]  Mark N. Ellingham,et al.  Basic subgraphs and graph spectra , 1993, Australas. J Comb..

[2]  W. G. Bridges,et al.  Multiplicative cones — a family of three eigenvalue graphs , 1981 .

[3]  D. Cvetkovic,et al.  Some characterizations of graphs by star complements , 1999 .

[4]  Peter J. Cameron,et al.  Designs, graphs, codes, and their links , 1991 .

[5]  Michael Doob,et al.  Spectra of graphs , 1980 .

[6]  J. J. Seidel,et al.  On two-graphs, and Shult's characterization of symplectic and orthogonal geometries over GF(2) , 1973 .

[7]  Michael Doob,et al.  On spectral characterizations and embeddings of graphs , 1979 .

[8]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[9]  J. Seidel,et al.  Line graphs, root systems, and elliptic geometry , 1976 .

[10]  A. Neumaier,et al.  Exceptional graphs with smallest eigenvalue -2 and related problems , 1992 .

[11]  Michael Doob,et al.  Generalized line graphs , 1981, J. Graph Theory.

[12]  Edwin R. van Dam,et al.  Nonregular Graphs with Three Eigenvalues , 1998, J. Comb. Theory B.

[13]  P. Hansen,et al.  Discrete Mathematical Chemistry , 2000 .

[14]  Peter Rowlinson Star sets and star complements in finite graphs: A spectral construction technique , 1998, Discrete Mathematical Chemistry.

[15]  D. Cvetkovic,et al.  Graphs with Least Eigenvalue −2: The Star Complement Technique , 2001 .

[16]  Peter Rowlinson,et al.  On graphs with multiple eigenvalues , 1998 .

[17]  P. Rowlinson,et al.  THE MAXIMAL EXCEPTIONAL GRAPHS WITH MAXIMAL DEGREE LESS THAN 28 , 2001 .

[18]  Dragos Cvetkovic,et al.  A table of connected graphs on six vertices , 1984, Discret. Math..

[19]  D. Cvetkovic,et al.  Eigenspaces of graphs: Bibliography , 1997 .

[20]  Dragoš Cvetković,et al.  Graphs related to exceptional root systems , 1976 .