Bayesian model selection of regular vine copulas

Regular vine copulas can describe a wider array of dependency patterns than the multivariate Gaussian copula or the multivariate Student’s t copula. We present reversible jump Markov chain Monte Carlo algorithms to estimate the joint posterior distribution of the density factorization, pair copula families, and parameters of a regular vine copula. A simulation study shows that our algorithms outperform model selection methods suggested in the current literature and succeed in selecting the true model when other methods fail. Furthermore, we present an application study that shows how a vine copula-based approach can improve the pricing of exotic financial derivatives.

[1]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[2]  C. Czado,et al.  Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .

[3]  C. Czado,et al.  Bayesian model selection for D‐vine pair‐copula constructions , 2011 .

[4]  Lutz F. Gruber,et al.  Bayesian Inference for Latent Factor Copulas and Application to Financial Risk Forecasting , 2017 .

[5]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[6]  Eike Christian Brechmann,et al.  Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine , 2013 .

[7]  D. Tasche,et al.  Expected Shortfall: a natural coherent alternative to Value at Risk , 2001, cond-mat/0105191.

[8]  Jong-Min Kim,et al.  Mixture of D-vine copulas for modeling dependence , 2013, Comput. Stat. Data Anal..

[9]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[10]  Michael A. West,et al.  Time Series: Modeling, Computation, and Inference , 2010 .

[11]  Claudia Czado,et al.  Detecting regime switches in the dependence structure of high dimensional financial data , 2012, 1202.2009.

[12]  Dorota Kurowicka,et al.  Dependence Modeling: Vine Copula Handbook , 2010 .

[13]  H. Joe Multivariate models and dependence concepts , 1998 .

[14]  Claudia Czado,et al.  Simplified pair copula constructions - Limitations and extensions , 2013, J. Multivar. Anal..

[15]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[16]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[17]  C. Czado,et al.  Truncated regular vines in high dimensions with application to financial data , 2012 .

[18]  C. Czado,et al.  Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence , 2010 .

[19]  Collin Carbno,et al.  Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.

[20]  Lutz F. Gruber,et al.  Sequential Bayesian Model Selection of Regular Vine Copulas , 2015, 1512.00976.

[21]  H. Joe Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .

[22]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[23]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[24]  Jianqing Fan,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[25]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[26]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[27]  Felix Salmon The formula that killed Wall Street , 2012 .

[28]  R. Nelsen An Introduction to Copulas , 1998 .