Bayesian model selection of regular vine copulas
暂无分享,去创建一个
[1] Adrian E. Raftery,et al. Bayesian Model Averaging: A Tutorial , 2016 .
[2] C. Czado,et al. Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .
[3] C. Czado,et al. Bayesian model selection for D‐vine pair‐copula constructions , 2011 .
[4] Lutz F. Gruber,et al. Bayesian Inference for Latent Factor Copulas and Application to Financial Risk Forecasting , 2017 .
[5] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[6] Eike Christian Brechmann,et al. Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine , 2013 .
[7] D. Tasche,et al. Expected Shortfall: a natural coherent alternative to Value at Risk , 2001, cond-mat/0105191.
[8] Jong-Min Kim,et al. Mixture of D-vine copulas for modeling dependence , 2013, Comput. Stat. Data Anal..
[9] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[10] Michael A. West,et al. Time Series: Modeling, Computation, and Inference , 2010 .
[11] Claudia Czado,et al. Detecting regime switches in the dependence structure of high dimensional financial data , 2012, 1202.2009.
[12] Dorota Kurowicka,et al. Dependence Modeling: Vine Copula Handbook , 2010 .
[13] H. Joe. Multivariate models and dependence concepts , 1998 .
[14] Claudia Czado,et al. Simplified pair copula constructions - Limitations and extensions , 2013, J. Multivar. Anal..
[15] Michael A. West,et al. Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..
[16] Roger M. Cooke,et al. Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.
[17] C. Czado,et al. Truncated regular vines in high dimensions with application to financial data , 2012 .
[18] C. Czado,et al. Modeling Longitudinal Data Using a Pair-Copula Decomposition of Serial Dependence , 2010 .
[19] Collin Carbno,et al. Uncertainty Analysis With High Dimensional Dependence Modelling , 2007, Technometrics.
[20] Lutz F. Gruber,et al. Sequential Bayesian Model Selection of Regular Vine Copulas , 2015, 1512.00976.
[21] H. Joe. Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters , 1996 .
[22] Christine M. Anderson-Cook,et al. Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.
[23] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[24] Jianqing Fan,et al. Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .
[25] Claudia Czado,et al. Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..
[26] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[27] Felix Salmon. The formula that killed Wall Street , 2012 .
[28] R. Nelsen. An Introduction to Copulas , 1998 .