New interpolation results and applications to finite element methods for elliptic boundary value problems
暂无分享,去创建一个
[1] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[2] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[3] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[4] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[5] Panayot S. Vassilevski,et al. Computational scales of Sobolev norms with application to preconditioning , 2000, Math. Comput..
[6] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[7] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[8] Joseph E. Pasciak,et al. Using finite element tools in proving shift theorems for elliptic boundary value problems , 2003, Numer. Linear Algebra Appl..
[9] J. Lions,et al. Sur Une Classe D’Espaces D’Interpolation , 1964 .
[10] Joseph E. Pasciak,et al. A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..
[11] James H. Bramble,et al. Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory , 1995 .
[12] Joseph E. Pasciak,et al. Least-squares for second-order elliptic problems , 1998 .