Aberrant HOXC expression accompanies the malignant phenotype in human prostate.

Dysregulation of HOX gene expression has been implicated as a factor in malignancies for a number of years. However, no consensus has emerged regarding specific causative genes. Using a degenerate reverse transcription-PCR technique, we show up-regulation of genes from the HOXC cluster in malignant prostate cell lines and lymph node metastases. When relative expression levels of the four HOX clusters were examined, lymph node metastases and cell lines derived from lymph node metastases exhibited very similar patterns, patterns distinct from those in benign cells or malignant cell lines derived from other tumor sites. Specific reverse transcription-PCR for HOXC4, HOXC5, HOXC6, and HOXC8 confirmed overexpression of these genes in malignant cell lines and lymph node metastases. Laser capture microdissection and examination of paired tumor/normal prostate epithelial cells also indicated overexpression of these HOXC genes in primary tumor cells. Our data indicate a possible link between expression of HOXC genes and malignancy in prostate cells. Overexpression of HOXC8 in LNCaP prostate cancer cells suppressed transactivation by androgen receptors. We speculate that HOXC overexpression may predispose tumor cells to androgen independence by necessitating adaptation to diminished androgen signaling.

[1]  E. Boncinelli,et al.  Vertebrate homeobox genes , 2005, Genetica.

[2]  Jin-Tang Dong Chromosomal Deletions and Tumor Suppressor Genes in Prostate Cancer , 2004, Cancer and Metastasis Reviews.

[3]  Ioannis Panagopoulos,et al.  Fusion of the NUP98 gene and the homeobox gene HOXC13 in acute myeloid leukemia with t(11;12)(p15;q13) , 2003, Genes, chromosomes & cancer.

[4]  Alicia Samuels,et al.  Cancer Statistics, 2003 , 2003, CA: a cancer journal for clinicians.

[5]  B. Owens,et al.  HOX and Non‐HOX Homeobox Genes in Leukemic Hematopoiesis , 2002, Stem cells.

[6]  Y. Hayashi,et al.  Novel NUP98-HOXC11 fusion gene resulted from a chromosomal break within exon 1 of HOXC11 in acute myeloid leukemia with t(11;12)(p15;q13). , 2002, Cancer research.

[7]  R. Cardiff,et al.  Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. , 2002, Cancer research.

[8]  S. Potter,et al.  Functional comparison of the Hoxa 4, Hoxa 10, and Hoxa 11 homeoboxes. , 2002, Developmental biology.

[9]  Peter A. Humphrey,et al.  Conditional Loss of Nkx3.1 in Adult Mice Induces Prostatic Intraepithelial Neoplasia , 2002, Molecular and Cellular Biology.

[10]  V. Castronovo,et al.  Overexpression of the homeobox gene HOXC8 in human prostate cancer correlates with loss of tumor differentiation * , 2002, The Prostate.

[11]  I. Miura,et al.  Single-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15). , 2002, Blood.

[12]  C. Shen DEREGULATED HOMEOBOX GENE EXPRESSION IN CANCER: CAUSE OR CONSEQUENCE? , 2002 .

[13]  G. Ayala,et al.  Reactive stroma in prostate cancer progression. , 2001, The Journal of urology.

[14]  A. Fishman,et al.  The HOX Homeodomain Proteins Block CBP Histone Acetyltransferase Activity , 2001 .

[15]  Yoko Takahashi,et al.  Overexpression of homeobox gene HOXD3 induces coordinate expression of metastasis‐related genes in human lung cancer cells , 2001, International journal of cancer.

[16]  G. Miller,et al.  Karyotypic similarity identified by multiplex‐FISH relates four prostate adenocarcinoma cell lines: PC‐3, PPC‐1, ALVA‐31, and ALVA‐41 , 2001, Genes, chromosomes & cancer.

[17]  M. Cantile,et al.  Homeobox genes in normal and malignant cells , 2001, Journal of cellular physiology.

[18]  F. Dilworth,et al.  Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription , 2001, Oncogene.

[19]  P. Chambon,et al.  Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. , 2001, Development.

[20]  C. Korch,et al.  Widely used prostate carcinoma cell lines share common origins , 2001, The Prostate.

[21]  Mark Watson,et al.  Technical Advance Expression Profiling of Ductal Carcinoma in Situ by Laser Capture Microdissection and High-Density Oligonucleotide Arrays , 2001 .

[22]  T. Kyo,et al.  Heterogeneous fusion transcripts involving the NUP98 gene and HOXD13 gene activation in a case of acute myeloid leukemia with the t(2;11)(q31;p15) translocation , 2000, Leukemia.

[23]  M. Scott,et al.  Distinct hox protein sequences determine specificity in different tissues. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Greer,et al.  Maintenance of functional equivalence during paralogous Hox gene evolution , 2000, Nature.

[25]  C. Bieberich,et al.  Androgen‐independent expression of hoxb‐13 in the mouse prostate , 1999, The Prostate.

[26]  S. Schwartz,et al.  A new human prostate carcinoma cell line, 22Rv1 , 1999, In Vitro Cellular & Developmental Biology - Animal.

[27]  R. Cardiff,et al.  Roles for Nkx3.1 in prostate development and cancer. , 1999, Genes & development.

[28]  N. McKenna,et al.  Nuclear receptor coactivators: multiple enzymes, multiple complexes, multiple functionsProceedings of Xth International Congress on Hormonal Steroids, Quebec, Canada, 17–21 June 1998. , 1999, The Journal of Steroid Biochemistry and Molecular Biology.

[29]  M. Capecchi,et al.  Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  N. Engedal,et al.  CREB Binding Protein Is a Coactivator for the Androgen Receptor and Mediates Cross-talk with AP-1* , 1998, The Journal of Biological Chemistry.

[31]  O. Jänne,et al.  CREB-binding protein in androgen receptor-mediated signaling. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. A. Klein,et al.  Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice , 1997, Nature Medicine.

[33]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[34]  Phillips,et al.  Antisense RNA Amplification: A Linear Amplification Method for Analyzing the mRNA Population from Single Living Cells , 1996, Methods.

[35]  A. Levine,et al.  Bone extracellular matrix induces homeobox proteins independent of androgens: Possible mechanism for androgen‐independent growth in human prostate cancer cells , 1996, The Prostate.

[36]  V. Castronovo,et al.  Cloning and expression of a new HOXC6 transcript encoding a repressing protein. , 1996, The Biochemical journal.

[37]  A. Carè,et al.  HOXB7 constitutively activates basic fibroblast growth factor in melanomas , 1996, Molecular and cellular biology.

[38]  V. Castronovo,et al.  Detection of HOXA1 expression in human breast cancer. , 1996, Biochemical and biophysical research communications.

[39]  F. Schröder,et al.  Perspectives of the Use of Tissue Culture Methods as an Alternative to Human Prostate Cancer Xenografts in Nude Mice , 1996 .

[40]  R. Dahiya,et al.  Normal Development and Carcinogenesis of the Prostate , 1996, Annals of the New York Academy of Sciences.

[41]  Keisuke Toyama,et al.  The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP96 and class I homeoprotein HOXA9 , 1996, Nature Genetics.

[42]  A. Feinberg,et al.  Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia , 1996, Nature Genetics.

[43]  C. Chin-Chance,et al.  Expression of the homeotic gene Hox-d13 in the developing and adult mouse prostate. , 1996, The Journal of urology.

[44]  R. Krumlauf,et al.  Paralogous Hox genes: function and regulation. , 1996, Annual review of genetics.

[45]  G. Sauvageau,et al.  Stage- and lineage-specific expression of the HOXA10 homeobox gene in normal and leukemic hematopoietic cells. , 1995, Experimental hematology.

[46]  S. Nordeen,et al.  Modulation of glucocorticoid-regulated transcription by purines: novel characteristics and implications for tissue specificity of steroid responses. , 1995, Endocrinology.

[47]  H. Soyer,et al.  Expression of the homeobox gene HOXC4 in keratinocytes of normal skin and epithelial skin tumors is correlated with differentiation. , 1994, The Journal of investigative dermatology.

[48]  G. Edelman,et al.  Regulation in vitro of an L-CAM enhancer by homeobox genes HoxD9 and HNF-1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  W. Isaacs,et al.  Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. , 1994, Cancer research.

[50]  R. Redline,et al.  Expression of AbdB-type homeobox genes in human tumors. , 1994, Laboratory investigation; a journal of technical methods and pathology.

[51]  F H Ruddle,et al.  Evolution of Hox genes. , 1994, Annual review of genetics.

[52]  J. Veldscholte,et al.  Effects of antiandrogens on transformation and transcription activation of wild-type and mutated (LNCaP) androgen receptors , 1993, The Journal of Steroid Biochemistry and Molecular Biology.

[53]  H. Kondoh,et al.  A mouse homologue of the Drosophila tumour-suppressor gene l(2)gl controlled by Hox-C8 in vivo , 1993, Nature.

[54]  G. Haas,et al.  The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. , 1993, The Journal of urology.

[55]  E. Boncinelli,et al.  Expression of HOX C homeobox genes in lymphoid cells. , 1993, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[56]  G. Edelman,et al.  Binding and transcriptional activation of the promoter for the neural cell adhesion molecule by HoxC6 (Hox-3.3). , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Nordeen,et al.  Latent agonist activity of the steroid antagonist, RU486, is unmasked in cells treated with activators of protein kinase A. , 1993, Molecular endocrinology.

[58]  E. Boncinelli,et al.  Characteristic patterns of hox gene expression in different types of human leukemia , 1993, International journal of cancer.

[59]  E. Boncinelli,et al.  Expression of homeobox-containing genes in primary and metastatic colorectal cancer. , 1993, European journal of cancer.

[60]  R. Ostenson,et al.  Human primary prostate tumor cell line, ALVA‐31: A new model for studying the hormonal regulation of prostate tumor cell growth , 1993, The Prostate.

[61]  M. Scott Vertebrate homeobox gene nomenclature , 1992, Cell.

[62]  E. Boncinelli,et al.  HOX gene expression in normal and neoplastic human kidney , 1992, International journal of cancer.

[63]  G. Edelman,et al.  Cell adhesion molecules as targets for Hox genes: neural cell adhesion molecule promoter activity is modulated by cotransfection with Hox-2.5 and -2.4. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[64]  N. Haigwood,et al.  Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. , 1991, Nucleic acids research.

[65]  G. Wright,et al.  Comparative study of monoclonal antibodies TURP-27 and HNK-1: their relationship to neural cell adhesion molecules and prostate tumor-associated antigens. , 1991, Cancer research.

[66]  A. Perkins,et al.  Homeobox gene expression plus autocrine growth factor production elicits myeloid leukemia. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[67]  George L. Wright,et al.  Phenotypic and cytogenetic characterization of a cell line derived from primary prostatic carcinoma , 1989, International journal of cancer.

[68]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[69]  G. Murphy,et al.  LNCaP model of human prostatic carcinoma. , 1983, Cancer research.

[70]  P. Correa,et al.  Prevalence of latent prostate carcinoma in two U.S. populations. , 1980, Journal of the National Cancer Institute.

[71]  S. Arya,et al.  The LNCaP cell line--a new model for studies on human prostatic carcinoma. , 1980, Progress in clinical and biological research.

[72]  J. Lechner,et al.  Establishment and characterization of a human prostatic carcinoma cell line (PC-3). , 1979, Investigative urology.

[73]  D. Paulson,et al.  Isolation of a human prostate carcinoma cell line (DU 145) , 1978, International journal of cancer.