Unifying Spatial Keyword Indexing in Continuous Search on Dynamic Objects

[1]  Hiroyuki Kitagawa,et al.  Continuous Search on Dynamic Spatial Keyword Objects , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[2]  Kian-Lee Tan,et al.  Temporal Spatial-Keyword Top-k publish/subscribe , 2015, 2015 IEEE 31st International Conference on Data Engineering.

[3]  Christian S. Jensen,et al.  Spatial Keyword Query Processing: An Experimental Evaluation , 2013, Proc. VLDB Endow..

[4]  Kyriakos Mouratidis,et al.  Continuous monitoring of top-k queries over sliding windows , 2006, SIGMOD Conference.

[5]  Xiaohui Yu,et al.  Monitoring k-nearest neighbor queries over moving objects , 2005, 21st International Conference on Data Engineering (ICDE'05).

[6]  Chuan Xiao,et al.  Pigeonring: A Principle for Faster Thresholded Similarity Search , 2018, Proc. VLDB Endow..

[7]  Christian S. Jensen,et al.  Querying Geo-Textual Data: Spatial Keyword Queries and Beyond , 2016, SIGMOD Conference.

[8]  Walid G. Aref,et al.  Query Processing Techniques for Big Spatial-Keyword Data , 2017, SIGMOD Conference.

[9]  Kenji Kita,et al.  An Improved Method to Select Candidates on Metric Index VP-tree , 2011, KDIR.

[10]  Kyriakos Mouratidis,et al.  Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring , 2005, SIGMOD '05.

[11]  Jianquan Liu,et al.  Indexing expensive functions for efficient multi-dimensional similarity search , 2010, Knowledge and Information Systems.

[12]  Walid G. Aref,et al.  SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases , 2005, 21st International Conference on Data Engineering (ICDE'05).