Algorithms for mobile robot localization and mapping, incorporating detailed noise modeling and multi-scale feature extraction

Mobile robot localization and mapping in unknown environments is a fundamental requirement for effective autonomous navigation. Three different approaches to localization and mapping are presented. Each is based on data collected from a robot using a dense range scanner to generate a planar representation of the surrounding environment. This externally sensed range data is then overlayed and correlated to estimate the robot's position and build a map. The three approaches differ in the choice of representation of the range data, but all achieve improvements over prior work using detailed sensor modeling and rigorous bookkeeping of the modeled uncertainty in the estimation processes. In the first approach, the raw range data points collected from two different positions are individually weighted and aligned to estimate the relative robot displacement. In the second approach, line segment features are extracted from the raw point data and are used as the basis for efficient and robust global map construction and localization. In the third approach, a new multi-scale data representation is introduced. New methods of localization and mapping are developed, taking advantage of this multi-scale representation to achieve significant improvements in computational complexity. A central focus of all three approaches is the determination of accurate and robust solutions to the data association problem, which is critical to the accuracy of any sensor-based localization and mapping method. Experiments using data collected from a Sick LMS-200 laser scanner illustrate the effectiveness of the algorithms and improvements over prior work. All methods are capable of being run in real time on a mobile robot, and can be used to support fully autonomous navigation applications.

[1]  Dinesh K. Pai,et al.  Multiresolution rough terrain motion planning , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[2]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[3]  Stergios I. Roumeliotis,et al.  Weighted range sensor matching algorithms for mobile robot displacement estimation , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Hobart R. Everett,et al.  Mobile robot positioning: Sensors and techniques , 1997, J. Field Robotics.

[5]  Sebastian Thrun,et al.  A Multi-Resolution Pyramid for Outdoor Robot Terrain Perception , 2004, AAAI.

[6]  Enrico Magli,et al.  Determination of a segment endpoint by means of the Radon transform , 1999, ICECS'99. Proceedings of ICECS '99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357).

[7]  David M. Mount,et al.  A practical approximation algorithm for the LMS line estimator , 1997, SODA '97.

[8]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[9]  Jean-Paul Laumond,et al.  Position referencing and consistent world modeling for mobile robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[10]  Henrik I. Christensen,et al.  Laser based position acquisition and tracking in an indoor environment , 1998 .

[11]  Stergios I. Roumeliotis,et al.  Stochastic cloning: a generalized framework for processing relative state measurements , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[12]  Michael Bosse,et al.  Autonomous feature-based exploration , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[13]  Gamini Dissanayake,et al.  An efficient algorithm for line extraction from laser scans , 2004, IEEE Conference on Robotics, Automation and Mechatronics, 2004..

[14]  Patrick Rives,et al.  A relative motion estimation by combining laser measurement and sensor based control , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[15]  Matthew R. Walter,et al.  A Provably Consistent Method for Imposing Sparsity in Feature-Based SLAM Information Filters , 2007, ISRR.

[16]  Olivier Faugeras,et al.  Maintaining representations of the environment of a mobile robot , 1988, IEEE Trans. Robotics Autom..

[17]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[18]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Peter Cheeseman,et al.  On the Representation and Estimation of Spatial Uncertainty , 1986 .

[20]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[21]  Alberto Elfes,et al.  Occupancy grids: a probabilistic framework for robot perception and navigation , 1989 .

[22]  Enrico Magli,et al.  Integrated compression and linear feature detection in the wavelet domain , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[23]  Hugh F. Durrant-Whyte,et al.  Natural landmark-based autonomous navigation using curvature scale space , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[24]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[25]  M. Amann,et al.  Laser ranging: a critical review of usual techniques for distance measurement , 2001 .

[26]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[27]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[28]  Enrico Magli,et al.  On high resolution positioning of straight patterns via multiscale matched filtering of the Hough transform , 2001, Pattern Recognit. Lett..

[29]  Stergios I. Roumeliotis,et al.  SEGMENTS: a layered, dual-Kalman filter algorithm for indoor feature extraction , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[30]  Roland Siegwart,et al.  SLAM with corner features based on a relative map , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[31]  Leslie Pack Kaelbling,et al.  Representing hierarchical POMDPs as DBNs for multi-scale robot localization , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[32]  Geovany de Araújo Borges,et al.  A split-and-merge segmentation algorithm for line extraction in 2D range images , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[33]  S. Engelson Passive map learning and visual place recognition , 1994 .

[34]  Frank Dellaert,et al.  Feature Correspondence: A Markov Chain Monte Carlo Approach , 2000, NIPS.

[35]  M. D. Adams,et al.  Lidar design, use, and calibration concepts for correct environmental detection , 2000, IEEE Trans. Robotics Autom..

[36]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[37]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[38]  Greg Welch,et al.  Welch & Bishop , An Introduction to the Kalman Filter 2 1 The Discrete Kalman Filter In 1960 , 1994 .

[39]  Josef Kittler,et al.  The Adaptive Hough Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Evangelos E. Milios,et al.  Globally Consistent Range Scan Alignment for Environment Mapping , 1997, Auton. Robots.

[41]  Satoru Takahashi,et al.  Motion and shape identification with vision and range , 2002, IEEE Trans. Autom. Control..

[42]  Johan Forsberg,et al.  Mobile robot navigation using the range-weighted Hough transform , 1995, IEEE Robotics Autom. Mag..

[43]  M. I. Ribeiro,et al.  LOCALISATION OF A MOBILE ROBOT USING A LASER SCANNER ON RECONSTRUCTED 3D MODELS 1 , 1998 .

[44]  Isao Masuda,et al.  A New Mobile Robot Guidance System Using Optical Reflectors , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  James L. Crowley World modeling and position estimation for a mobile robot using ultrasonic ranging , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[46]  Ben J. A. Kröse,et al.  Robot environment modeling via principal component regression , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[47]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..

[48]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[50]  Hugh F. Durrant-Whyte,et al.  A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[51]  Günther Schmidt,et al.  Fusing range and intensity images for mobile robot localization , 1999, IEEE Trans. Robotics Autom..

[52]  Penny Probert Smith,et al.  The Interpretation of Phase and Intensity Data from AMCW Light Detection Sensors for Reliable Ranging , 1996, Int. J. Robotics Res..

[53]  Marcos A. Rodrigues,et al.  Accurate registration of structured data using two overlapping range images , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[54]  Rafael Gutiérrez,et al.  Mobile robot motion estimation from a range scan sequence , 1997, Proceedings of International Conference on Robotics and Automation.

[55]  Stergios I. Roumeliotis,et al.  Bayesian estimation and Kalman filtering: a unified framework for mobile robot localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[56]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[57]  Stergios I. Roumeliotis,et al.  Weighted line fitting algorithms for mobile robot map building and efficient data representation , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[58]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[59]  Nagaraj Nandhakumar,et al.  Object motion and structure recovery for robotic vision using scanning laser range sensors , 1997, IEEE Trans. Robotics Autom..

[60]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[61]  Josef Kittler,et al.  A comparison of Hough transform methods , 1989 .

[62]  Gregory D. Hager,et al.  Real-time vision-based robot localization , 1993, IEEE Trans. Robotics Autom..

[63]  Jonas NygZirds Model Based Fusion of Laser and Camera: Range Discontinuities and Motion Consistency , 2004 .

[64]  Albert-Jan Baerveldt,et al.  Localization in changing environments - estimation of a covariance matrix for the IDC algorithm , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[65]  Andrew E. Johnson,et al.  Motion estimation from laser ranging for autonomous comet landing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[66]  Luca Iocchi,et al.  Hough transform based localization for mobile robots , 1999 .